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Review of atomic primitives

� XCHG (ptr, val) atomically:
� old val = *ptr
� *ptr = val
� return old val

� CAS (ptr, expect, new) atomically:
� if ( *ptr != expect ) return *ptr;
� else return XCHG (ptr, new);

� Note that CAS is no harder - it’s a read and a write; the
logic is free (it’s on the chip).
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Locks can be expensive

� Consider XCHG style locks which use
while( xchg( &locked, LOCKED ) == LOCKED )

as their core operation.

� Each xchg flushes the processor pipeline. . .

� We could spend a long time here waiting or yielding. . .

� This implies we’ll have very high latency on contention. . .
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Lock-Free Linked List Insertion

Lock-Free Linked List Node
Insertion into a Lock-free Linked List: Successful case
Insertion into a Lock-free Linked List: Race case
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Lock-Free Linked List Node

� Node definition is simple:
void* data

void* next



Motivation LFL Insert LFL Delete Some real algorithms?

Insertion into a Lock-free Linked List:

Successful case
Setup

A next // C next

B next

� Some thread constructs the bottom node B ; wishes to
place it between the two above, A and C .
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Insertion into a Lock-free Linked List:

Successful case
First step

A next // C next

B next

77ooooooooooooo

� Thread points B node’s next into list at C .



Motivation LFL Insert LFL Delete Some real algorithms?

Insertion into a Lock-free Linked List:

Successful case
First step

A next
set by CAS

||yy
yy

yy
yy

y
C next

B next

77ooooooooooooo

� CAS used to point previous node A to new node B .

� . . .

� So wait, what’s the cleverness?
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Insertion into a Lock-free Linked List: Race

case
First step

B next

''OOOOOOOOOOOOO

A next // D next

C next

77ooooooooooooo

� Two threads point their respective nodes B and C into
list at D

� Both of them try to CAS the previous node’s (A’s) next
pointer. . .
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Insertion into a Lock-free Linked List: Race

case
One thread goes

B next

''OOOOOOOOOOOOO

A next

CAS

bbEEEEEEEEE

D next

C next

77ooooooooooooo

� One of the two goes (here the thread owning B won). . .
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Insertion into a Lock-free Linked List: Race

case
And the other. . .

B next

''OOOOOOOOOOOOO

A next

CAS

bbEEEEEEEEE

CAS fail!

||

D next

C next

77ooooooooooooo

� And the other (owning C ). . .

� But the expect value doesn’t match, so the linked list
structure is OK.

� So this thread tries again and does the same dance. . .
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That’s great!

� Yes, if we want an insert-and-read only list, then it’s fine!

� How many datastructures are like that?
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Deletion is easy?

� Can we just prune the node?

� Given

B next

''OOOOOOOOOOOOO

A next

bbEEEEEEEEE

C next

� Can’t we just transition via CAS to

B next

''OOOOOOOOOOOOO

A next // C next

� Yes, but can we reclaim that memory?
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Deletion is easy?
Continued

� Can’t we just transition via CAS to

B next

''OOOOOOOOOOOOO

A next // C next

� There might be another thread touching the upper node
(B)!

� Can’t touch that memory at all!
� In particular, can’t free() it!
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Compromise?

� So, for a “deleted” node (often “logically deleted
node”). . .

� Let’s just leave it detatched from the list, marking it
somehow as deleted.

B INVALID

A next // C next

� Other threads will fail their operations and restart.
� We might have a free list of available nodes, even. . .

� Some real-world implementations do this, leaving as an
exercise to syncrhonize all threads to delete the the list
and free list when everybody’s done.
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Compromise?
Now reusing that memory. . .

� We might have a somewhat complex case of a sorted list

1 next

''OOOOOOOOOOOOO 6 next

5 next

bbDDDDDDDDD
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Compromise?
Now reusing that memory. . .

� Thread X trying to insert “3” after “1” races against
somebody deleting “5”.

� So we now have

1 next //

''

6 next

3 next // 5 INVALID

dd

� There is a deleted node (“5”, bottom right) that was the
next of “1” when thread X started running
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Compromise?
Now reusing that memory (part 2)

� Thread Y now reclaims deleted node, pushes in “2” and
points to “6”.

� Trying for a sorted list with

1 next // 6 next

3 next // 2 next

bbDDDDDDDDD

� Thread X still trying to insert “3” after “1”. Been
preempted for “a while”

� Anybody see the problem yet?
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Compromise?
Now reusing that memory (part 3)

� Thread Y now inserts the reclaimed node where it
belongs! (using CAS, of course)

� Trying for a sorted list with

1 next

""''

6 next

3 next // 2 next

bbDDDDDDDDD

� Thread X still trying to insert “3” after “1”. Been
preempted for “a while”

� The dotted line indicates what X expects to see!

� How about now?
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Compromise?
Now reusing that memory (part 4)

� Thread X wakes up, and the CAS works (!) giving instead

1 next

||zz
zz

zz
zz

z
6 next

3 next // 2 next

bbDDDDDDDDD
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Compromise?
Earth-Shattering KABOOM!

Figure: There was supposed to be an . . . [mar()]
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Compromise?
Woah, what just happened?

1 next

||zz
zz

zz
zz

z
6 next

3 next // 2 next

bbDDDDDDDDD

� But, but, but. . . {1, 3, 2, 6} isn’t sorted!

� This is called The ABA problem: the pointer changed
meaning but we didn’t notice.
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Full fledged deletion & reclaim
OK, so how do we actually do this?

� It turns out that we need a more sophisticated delete
function. Look at [Fomitchev and Ruppert(2004)] or
[Michael(2002a)] (or others) for more details.

� Generation counters are a simple way to solve ABA
(usually requires use of CASn - acts on n words at once;
much slower than CAS)

� But that doesn’t solve memory reclaim - for these we
need more sophisticated algorithms (which also solve
ABA for us):

� Hazard Pointers (“Safe Memory Reclaimation” or just
“SMR”) [Michael(2002b)] and [Michael(2004)]

� Wait-free reference counters [Sundell(2005)]



Motivation LFL Insert LFL Delete Some real algorithms?

Some real algorithms?

� [Fomitchev and Ruppert(2004)] gives a simple,
non-reclaimable lock-free linked/skip-list algorithm.

� [Michael(2002a)] specifies a CAS-based lock-free
list-based sets and hash tables using SMR as a refinement
of the above.

� Their performance figures are worth looking at.
Summary: fine-grained locks (lock per node) show
linear-time increase with # threads, their algorithm
shows essentially constant time!
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