
Motivation LFL Insert LFL Delete Some real algorithms?

Lock-free Programming

Nathaniel Wesley Filardo

April 10, 2006

Motivation LFL Insert LFL Delete Some real algorithms?

Outline

Motivation

Lock-Free Linked List Insertion

Lock-Free Linked List Deletion

Some real algorithms?

Motivation LFL Insert LFL Delete Some real algorithms?

Motivation

Review of atomic primitives
Locks can be expensive

Motivation LFL Insert LFL Delete Some real algorithms?

Review of atomic primitives

� XCHG (ptr, val) atomically:
� old val = *ptr
� *ptr = val
� return old val

� CAS (ptr, expect, new) atomically:
� if (*ptr != expect) return *ptr;
� else return XCHG (ptr, new);

� Note that CAS is no harder - it’s a read and a write; the
logic is free (it’s on the chip).

Motivation LFL Insert LFL Delete Some real algorithms?

Locks can be expensive

� Consider XCHG style locks which use
while(xchg(&locked, LOCKED) == LOCKED)

as their core operation.

� Each xchg flushes the processor pipeline. . .

� We could spend a long time here waiting or yielding. . .

� This implies we’ll have very high latency on contention. . .

Motivation LFL Insert LFL Delete Some real algorithms?

Lock-Free Linked List Insertion

Lock-Free Linked List Node
Insertion into a Lock-free Linked List: Successful case
Insertion into a Lock-free Linked List: Race case

Motivation LFL Insert LFL Delete Some real algorithms?

Lock-Free Linked List Node

� Node definition is simple:
void* data

void* next

Motivation LFL Insert LFL Delete Some real algorithms?

Insertion into a Lock-free Linked List:

Successful case
Setup

A next // C next

B next

� Some thread constructs the bottom node B ; wishes to
place it between the two above, A and C .

Motivation LFL Insert LFL Delete Some real algorithms?

Insertion into a Lock-free Linked List:

Successful case
First step

A next // C next

B next

77ooooooooooooo

� Thread points B node’s next into list at C .

Motivation LFL Insert LFL Delete Some real algorithms?

Insertion into a Lock-free Linked List:

Successful case
First step

A next
set by CAS

||yy
yy

yy
yy

y
C next

B next

77ooooooooooooo

� CAS used to point previous node A to new node B .

� . . .

� So wait, what’s the cleverness?

Motivation LFL Insert LFL Delete Some real algorithms?

Insertion into a Lock-free Linked List: Race

case
First step

B next

''OOOOOOOOOOOOO

A next // D next

C next

77ooooooooooooo

� Two threads point their respective nodes B and C into
list at D

� Both of them try to CAS the previous node’s (A’s) next
pointer. . .

Motivation LFL Insert LFL Delete Some real algorithms?

Insertion into a Lock-free Linked List: Race

case
One thread goes

B next

''OOOOOOOOOOOOO

A next

CAS

bbEEEEEEEEE

D next

C next

77ooooooooooooo

� One of the two goes (here the thread owning B won). . .

Motivation LFL Insert LFL Delete Some real algorithms?

Insertion into a Lock-free Linked List: Race

case
And the other. . .

B next

''OOOOOOOOOOOOO

A next

CAS

bbEEEEEEEEE

CAS fail!

||

D next

C next

77ooooooooooooo

� And the other (owning C). . .

� But the expect value doesn’t match, so the linked list
structure is OK.

� So this thread tries again and does the same dance. . .

Motivation LFL Insert LFL Delete Some real algorithms?

That’s great!

� Yes, if we want an insert-and-read only list, then it’s fine!

� How many datastructures are like that?

Motivation LFL Insert LFL Delete Some real algorithms?

Deletion is easy?

� Can we just prune the node?

� Given

B next

''OOOOOOOOOOOOO

A next

bbEEEEEEEEE

C next

� Can’t we just transition via CAS to

B next

''OOOOOOOOOOOOO

A next // C next

� Yes, but can we reclaim that memory?

Motivation LFL Insert LFL Delete Some real algorithms?

Deletion is easy?
Continued

� Can’t we just transition via CAS to

B next

''OOOOOOOOOOOOO

A next // C next

� There might be another thread touching the upper node
(B)!

� Can’t touch that memory at all!
� In particular, can’t free() it!

Motivation LFL Insert LFL Delete Some real algorithms?

Compromise?

� So, for a “deleted” node (often “logically deleted
node”). . .

� Let’s just leave it detatched from the list, marking it
somehow as deleted.

B INVALID

A next // C next

� Other threads will fail their operations and restart.
� We might have a free list of available nodes, even. . .

� Some real-world implementations do this, leaving as an
exercise to syncrhonize all threads to delete the the list
and free list when everybody’s done.

Motivation LFL Insert LFL Delete Some real algorithms?

Compromise?
Now reusing that memory. . .

� We might have a somewhat complex case of a sorted list

1 next

''OOOOOOOOOOOOO 6 next

5 next

bbDDDDDDDDD

Motivation LFL Insert LFL Delete Some real algorithms?

Compromise?
Now reusing that memory. . .

� Thread X trying to insert “3” after “1” races against
somebody deleting “5”.

� So we now have

1 next //

''

6 next

3 next // 5 INVALID

dd

� There is a deleted node (“5”, bottom right) that was the
next of “1” when thread X started running

Motivation LFL Insert LFL Delete Some real algorithms?

Compromise?
Now reusing that memory (part 2)

� Thread Y now reclaims deleted node, pushes in “2” and
points to “6”.

� Trying for a sorted list with

1 next // 6 next

3 next // 2 next

bbDDDDDDDDD

� Thread X still trying to insert “3” after “1”. Been
preempted for “a while”

� Anybody see the problem yet?

Motivation LFL Insert LFL Delete Some real algorithms?

Compromise?
Now reusing that memory (part 3)

� Thread Y now inserts the reclaimed node where it
belongs! (using CAS, of course)

� Trying for a sorted list with

1 next

""''

6 next

3 next // 2 next

bbDDDDDDDDD

� Thread X still trying to insert “3” after “1”. Been
preempted for “a while”

� The dotted line indicates what X expects to see!

� How about now?

Motivation LFL Insert LFL Delete Some real algorithms?

Compromise?
Now reusing that memory (part 4)

� Thread X wakes up, and the CAS works (!) giving instead

1 next

||zz
zz

zz
zz

z
6 next

3 next // 2 next

bbDDDDDDDDD

Motivation LFL Insert LFL Delete Some real algorithms?

Compromise?
Earth-Shattering KABOOM!

Figure: There was supposed to be an . . . [mar()]

Motivation LFL Insert LFL Delete Some real algorithms?

Compromise?
Woah, what just happened?

1 next

||zz
zz

zz
zz

z
6 next

3 next // 2 next

bbDDDDDDDDD

� But, but, but. . . {1, 3, 2, 6} isn’t sorted!

� This is called The ABA problem: the pointer changed
meaning but we didn’t notice.

Motivation LFL Insert LFL Delete Some real algorithms?

Full fledged deletion & reclaim
OK, so how do we actually do this?

� It turns out that we need a more sophisticated delete
function. Look at [Fomitchev and Ruppert(2004)] or
[Michael(2002a)] (or others) for more details.

� Generation counters are a simple way to solve ABA
(usually requires use of CASn - acts on n words at once;
much slower than CAS)

� But that doesn’t solve memory reclaim - for these we
need more sophisticated algorithms (which also solve
ABA for us):

� Hazard Pointers (“Safe Memory Reclaimation” or just
“SMR”) [Michael(2002b)] and [Michael(2004)]

� Wait-free reference counters [Sundell(2005)]

Motivation LFL Insert LFL Delete Some real algorithms?

Some real algorithms?

� [Fomitchev and Ruppert(2004)] gives a simple,
non-reclaimable lock-free linked/skip-list algorithm.

� [Michael(2002a)] specifies a CAS-based lock-free
list-based sets and hash tables using SMR as a refinement
of the above.

� Their performance figures are worth looking at.
Summary: fine-grained locks (lock per node) show
linear-time increase with # threads, their algorithm
shows essentially constant time!

Marvin the martian, URL
http://www.snowflake-designs.com/images/

Marvin%20Martian%201.jpg.

M. Fomitchev and E. Ruppert, PODC pp. 50–60 (2004),
URL http://www.research.ibm.com/people/m/

michael/podc-2002.pdf.

M. M. Michael, SPAA pp. 73–83 (2002a), URL
http://portal.acm.org/ft_gateway.cfm?id=

564881\&type=pdf\&coll=GUIDE\&dl=ACM\&CFID=

73232202\&CFTOKEN=1170757.

M. M. Michael, PODC pp. 1–10 (2002b), URL
http://www.research.ibm.com/people/m/michael/

podc-2002.pdf.

http://www.snowflake-designs.com/images/Marvin%20Martian%201.jpg
http://www.snowflake-designs.com/images/Marvin%20Martian%201.jpg
http://www.research.ibm.com/people/m/michael/podc-2002.pdf
http://www.research.ibm.com/people/m/michael/podc-2002.pdf
http://portal.acm.org/ft_gateway.cfm?id=564881&type=pdf&coll=GUIDE&dl=ACM&CFID=73232202&CFTOKEN=1170757
http://portal.acm.org/ft_gateway.cfm?id=564881&type=pdf&coll=GUIDE&dl=ACM&CFID=73232202&CFTOKEN=1170757
http://portal.acm.org/ft_gateway.cfm?id=564881&type=pdf&coll=GUIDE&dl=ACM&CFID=73232202&CFTOKEN=1170757
http://www.research.ibm.com/people/m/michael/podc-2002.pdf
http://www.research.ibm.com/people/m/michael/podc-2002.pdf

M. M. Michael, IEEECS pp. 1–10 (2004), URL
http://www.research.ibm.com/people/m/michael/

podc-2002.pdf.

H. Sundell (IEEE, 2005), 1530-2075/05, URL http://

ieeexplore.ieee.org/iel5/9722/30685/01419843.

pdf?tp=\&arnumber=1419843\&isnumber=30685.

Wikipedia, Lock-free and wait-free algorithms (2006a),
URL http://en.wikipedia.org/wiki/Lock-free_

and_wait-free_algorithms.

Wikipedia, Non-blocking synchronization (2006b), URL
http://en.wikipedia.org/wiki/Non-blocking_

synchronization.

http://www.research.ibm.com/people/m/michael/podc-2002.pdf
http://www.research.ibm.com/people/m/michael/podc-2002.pdf
http://ieeexplore.ieee.org/iel5/9722/30685/01419843.pdf?tp=&arnumber=1419843&isnumber=30685
http://ieeexplore.ieee.org/iel5/9722/30685/01419843.pdf?tp=&arnumber=1419843&isnumber=30685
http://ieeexplore.ieee.org/iel5/9722/30685/01419843.pdf?tp=&arnumber=1419843&isnumber=30685
http://en.wikipedia.org/wiki/Lock-free_and_wait-free_algorithms
http://en.wikipedia.org/wiki/Lock-free_and_wait-free_algorithms
http://en.wikipedia.org/wiki/Non-blocking_synchronization
http://en.wikipedia.org/wiki/Non-blocking_synchronization

Acknowledgements

� Dave Eckhardt (de0u) and Bruce Maggs (bmm) for moral
support and big-picture guidance

� Jess Mink (jmink), Matt Brewer (mbrewer), and Mister
Wright (mrwright) for being victims of beta versions of
this lecture.

	Motivation
	Review of atomic primitives
	Locks can be expensive

	Lock-Free Linked List Insertion
	Lock-Free Linked List Node
	Insertion into a Lock-free Linked List: Successful case
	Insertion into a Lock-free Linked List: Race case

	Lock-Free Linked List Deletion
	That's great!
	Deletion is easy?
	Compromise?
	Full fledged deletion & reclaim

	Some real algorithms?

