
Bootstrapping

Steve Muckle
Dave Eckhardt

Carnegie Mellon University 3

Synchronization

� Help Wanted

� Possible summer openings hacking for Facilities

� Bring me a resume

� A few good students wanted

� 15-412, Operating Systems Practicum

� Can spend some time extending your 410 kernel

� Spend some time in somebody else's kernel too

� Good to sign up with a partner (not mandatory)

Carnegie Mellon University 4

Motivation

� What happens when you turn on your PC?

� How do we get to main() in kernel.c?

Carnegie Mellon University 5

Overview

� Requirements of Booting

� Ground Zero

� The BIOS

� The Boot Loader

� Our projects: Multiboot, OSKit

� BIOS extensions: PXE, APM

� Other universes: “big iron”, Open Firmware

� Further reading

Carnegie Mellon University 6

Requirements of Booting

� Initialize machine to a known state

� Make sure basic hardware works

� Inventory hardware

� Load a real operating system

� Run the real operating system

Carnegie Mellon University 7

Ground Zero

� You turn on the machine

� Execution begins in real mode at a specific
memory address

� Real mode - primeval x86 addressing mode

� Only 1 MB of memory is addressable

� First instruction fetch address is “end of memory”

� 0xFFFF0

� Contains a jump to the real BIOS entry point

� What’s the BIOS?

Carnegie Mellon University 8

Basic Input/Output System
(BIOS)

� Code stored in mostly-read-only memory

� Flash, previously EEPROM, previously EPROM

� Configures hardware details

� RAM refresh rate or bus speed

� Password protection

� Boot-device order

� Loads OS, acts as mini-OS

� Provides some device drivers to real OS

Carnegie Mellon University 9

BIOS POST

� Power On Self Test (POST)

� Scan for critical resources

� RAM

� Test it (only a little!)

� Graphics card – look for driver code at 0xC000

� Disk – look for driver code at 0xC8000

� Keyboard

� Missing something?

� Beep

Carnegie Mellon University 10

BIOS Boot-Device Search

� Consult saved settings for selected order

� “A: C: G:” (maybe PXE)

� Load the first sector from a boot device
- could be a floppy, hard disk, CDROM
- without a BIOS, we’d be in a bit of a jam

� If the last two bytes are AA55, we’re set

� Otherwise look somewhere else

� If no luck, strike terror into user's heart:

� “No Operating System Present”

Carnegie Mellon University 11

BIOS Boot-Sector Launch

� Boot sector is copied to 0x7C00

� Execution is transferred to 0x7C00

� Extra step for hard disk or CD-ROM

� Boot sector (“MBR”) knows about partitions

� Starts running at 0x7C00

� Copies itself elsewhere in memory, jumps there

� Loads active partition's boot sector at 0x7C00

� Now we’re executing the bootloader – the
first “software” to execute on the PC

Carnegie Mellon University 12

Bootloader

� Some bootloaders designed to load one OS

� Others give you a choice of which to load

� Some are small and have a simple interface

� “F1 FreeBSD F2 Windows”

� Some are large, contain GUI, shell prompt

� We use GRUB

� http://www.gnu.org/software/grub/

Carnegie Mellon University 13

Bootloader's Job

� Mission: load operating system

� From where?

� “/boot/sokoban.gz” is easier said than done

� May need to understand a file system

� Directories, inodes, symbolic links!

� May need to understand multiple file systems

� Single disk may contain more than one

� Layout defined by “partition label”

� ...and “extended partition label”

� But...but...boot loader is 510 bytes of code!

Carnegie Mellon University 14

Multi-Stage Boot Loader

� GRUB is larger than one sector

� First sector, loaded in by the BIOS…

� ...just loads the rest of the boot loader

� “GRUB Loading stage2”

� GRUB then presents boot menu

� OS-load challenge

� BIOS runs in real mode – only 1 meg of RAM!

� OS may be larger than 1 meg

� Linux – often; Windows – absolutely!

Carnegie Mellon University 15

Brain-switching

� Switch back and forth between real and
protected mode

� Real mode: BIOS works, can drive disk

� Protected mode: can access lots of memory

� Switching code is tricky

� Somewhat like OS process context switch

� Roughly 16 carefully-crafted instructions each way

� Load done: jump to the kernel’s entry point
- How do we know the kernel’s entrypoint?

Carnegie Mellon University 16

Entry Point, Binary Format, ...

� Can't we just jump to the beginning?

� Probably not

� If kernel is a “regular executable” it begins
with an “executable file header” (e.g., ELF)

� If the OS has the concept of “BSS”, the
zeroes aren't in the file...

� Loading the bytes into RAM isn't enough

� We must understand, mutate them

Carnegie Mellon University 17

Multiboot Specification

� Attempt to define “portable kernel format”

� Multiboot “standard”

� Kernel specifies entry point &c

� The multiboot header
must be located in the
first 8192 bytes

� This is the mysterious
multiboot.o…

0x1badb002

flags

checksum

Header_addr

load_addr

load_end_addr

bss_end_addr

entry_addr

Carnegie Mellon University 18

410 “Pebbles” (from OSkit)

� Entry point is asm function in multiboot.o

	 This calls the first C function, multiboot_main

Carnegie Mellon University 19

OSkit

	 multiboot_main() calls:

 base_cpu_setup(): init GDT, IDT, and TSS

 base_multiboot_init_mem(): init LMM

 base_multiboot_init_cmdline()

� parse cmdline passed to kernel by bootloader

 kernel_main() (at last, your code!)

 printf(), if kernel_main() ever returns

� ...kernel main returned with code %d...

Carnegie Mellon University 20

PXE

	 Preboot Execution Environment

	 “How a PC should net boot”

� DHCP extensions to say

� “I am a PXE client of DHCP”

� “My machine ID is ... my hardware type is ...”

� DHCP server assigns IP address

� Instructs client: network settings, TFTP server, file

� Client downloads 2nd-stage boot via TFTP

	 PXE libraries for downloaded loader to use

� Ethernet, UDP, TFTP

Carnegie Mellon University 21

APM

	 Advanced Power Management

	 Problem – Laptop hardware is “special”

� Lots of power-critical hardware

� Totally different from one machine to another

� Disk spin-down (“standard” , so may be fairly easy)

� Display backlight, processor speed (not so easy)

� South bridge, DRAM controller, keyboard...

 Sequencing these in the right order is very machine-specific

	 Problem – user does things (close lid...)

Carnegie Mellon University 22

APM

	 Solution - “power kernel”

� OS asks it to control power hardware

� Power hardware tells OS about events

� Lid closed

� Battery low

	 Complex rules for messaging back and forth

 OS required to poll APM periodically

 May involve switch to 16-bit mode

 Suspend protocol: prepare/commit/abort...

Carnegie Mellon University 23

ACPI

	 Advanced Configuration & Power Interface

 APM's “big brother”

	 Good news

 OS gets more understanding, control

 BIOS provides state-transition tables

	 Bad news

 What the BIOS tells you is often wrong

 Lots of “patch the foo entry on machine bar”
workarounds to actually use it

Carnegie Mellon University 24

“Big Iron” (mainframes)

	 “Boot loader” may be a separate machine

� When main CPU powers on, it does not run code!

� “Front-end” tasks

� Run thorough diagnostics on main machine

� Store OS into its memory

� Set its program counter to entry point

� Turn on instruction fetching

� “Front-end” also contains a debugger

� Useful when your OS crashes

Carnegie Mellon University 25

Open Firmware

� Sun & Mac hardware (until June 2005, sigh)

� Goal: share devices across processor families

� Ethernet, SCSI disk controller, ...

� Solution

� Processor-independent BIOS modules on cards

� Collection of FORTH methods

� test, boot, open, close, read, write, etc.

� “Boot ROM” may contain a small debugger

� Sun, Mac do this... PCs are just starting to catch up

Carnegie Mellon University 26

EFI

� “Next big thing” in the PC world

� Including PC's made by Apple(!?)

� “Super sized” - #partitions, partition labels, ...

� More device drivers (not just disk, video)

� May be signed, certified, protected

� Many more interfaces, larger interfaces

� Lots of fun for the whole family

� Arriving mosty with x86-64 machines

Carnegie Mellon University 27

Summary

� It's a long, strange trip

� Power on: maybe no RAM, maybe no CPU!!

� Maybe beep, maybe draw a sad face

� Locate OS

� Load N stages

� Tell kernel about the machine and the boot params

� Provide support to kernel once it's running

Carnegie Mellon University 28

Further Reading

� More BIOS details

� http://www.pcguide.com/ref/mbsys/bios/bootSequence-c.html

� http://bioscentral.com/

� A real memory tester - memtest86.com

� Open-source BIOS!

� www.linuxbios.org

� openbios.info

� PXE ftp://download.intel.com/labs/manage/wfm/download/pxespec.pdf

