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Synchronization

� Help Wanted

� Possible summer openings hacking for Facilities

� Bring me a resume

� A few good students wanted

� 15-412, Operating Systems Practicum

� Can spend some time extending your 410 kernel

� Spend some time in somebody else's kernel too

� Good to sign up with a partner (not mandatory)
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Motivation

� What happens when you turn on your PC?

� How do we get to main() in kernel.c?
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Overview

� Requirements of Booting

� Ground Zero

� The BIOS

� The Boot Loader

� Our projects: Multiboot, OSKit

� BIOS extensions: PXE, APM

� Other universes: “big iron”, Open Firmware

� Further reading
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Requirements of Booting

� Initialize machine to a known state

� Make sure basic hardware works

� Inventory hardware

� Load a real operating system

� Run the real operating system
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Ground Zero

� You turn on the machine

� Execution begins in real mode at a specific 
memory address

� Real mode - primeval x86 addressing mode

� Only 1 MB of memory is addressable

� First instruction fetch address is “end of memory”

�  0xFFFF0

� Contains a jump to the real BIOS entry point

� What’s the BIOS?
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Basic Input/Output System 
(BIOS)

� Code stored in mostly-read-only memory

� Flash, previously EEPROM, previously EPROM

� Configures hardware details

� RAM refresh rate or bus speed

� Password protection

� Boot-device order

� Loads OS, acts as mini-OS

� Provides some device drivers to real OS
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BIOS POST

� Power On Self Test (POST)

� Scan for critical resources

� RAM

� Test it (only a little!)

� Graphics card – look for driver code at 0xC000

� Disk – look for driver code at 0xC8000

� Keyboard

� Missing something?

� Beep
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BIOS Boot-Device Search

� Consult saved settings for selected order

� “A: C: G:” (maybe PXE)

� Load the first sector from a boot device
- could be a floppy, hard disk, CDROM
- without a BIOS, we’d be in a bit of a jam

� If the last two bytes are AA55, we’re set

� Otherwise look somewhere else

� If no luck, strike terror into user's heart:

� “No Operating System Present”
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BIOS Boot-Sector Launch

� Boot sector is copied to 0x7C00

� Execution is transferred to 0x7C00

� Extra step for hard disk or CD-ROM

� Boot sector (“MBR”) knows about partitions

� Starts running at 0x7C00

� Copies itself elsewhere in memory, jumps there

� Loads active partition's boot sector at 0x7C00

� Now we’re executing the bootloader – the 
first “software” to execute on the PC
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Bootloader

� Some bootloaders designed to load one OS

� Others give you a choice of which to load

� Some are small and have a simple interface

� “F1 FreeBSD     F2 Windows”

� Some are large, contain GUI, shell prompt

� We use GRUB

� http://www.gnu.org/software/grub/
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Bootloader's Job

� Mission: load operating system

� From where?

� “/boot/sokoban.gz” is easier said than done

� May need to understand a file system

� Directories, inodes, symbolic links!

� May need to understand multiple file systems

� Single disk may contain more than one

� Layout defined by “partition label”

� ...and “extended partition label”

� But...but...boot loader is 510 bytes of code!
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Multi-Stage Boot Loader

� GRUB is larger than one sector

� First sector, loaded in by the BIOS…

� ...just loads the rest of the boot loader

� “GRUB Loading stage2”

� GRUB then presents boot menu

� OS-load challenge

� BIOS runs in real mode – only 1 meg of RAM!

� OS may be larger than 1 meg

� Linux – often; Windows – absolutely!
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Brain-switching

� Switch back and forth between real and 
protected mode

� Real mode: BIOS works, can drive disk

� Protected mode: can access lots of memory

� Switching code is tricky

� Somewhat like OS process context switch

� Roughly 16 carefully-crafted instructions each way

� Load done: jump to the kernel’s entry point
- How do we know the kernel’s entrypoint?
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Entry Point, Binary Format, ...

� Can't we just jump to the beginning?

� Probably not

� If kernel is a “regular executable” it begins 
with an “executable file header” (e.g., ELF)

� If the OS has the concept of “BSS”, the 
zeroes aren't in the file...

� Loading the bytes into RAM isn't enough

� We must understand, mutate them
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Multiboot Specification

� Attempt to define “portable kernel format”

� Multiboot “standard”

� Kernel specifies entry point &c

� The multiboot header
must be located in the
first 8192 bytes

� This is the mysterious
multiboot.o…

0x1badb002

flags

checksum

Header_addr

load_addr

load_end_addr

bss_end_addr

entry_addr
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410 “Pebbles” (from OSkit)

� Entry point is asm function in multiboot.o

	 This calls the first C function, multiboot_main
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OSkit

	 multiboot_main() calls:


 base_cpu_setup(): init GDT, IDT, and TSS


 base_multiboot_init_mem(): init LMM


 base_multiboot_init_cmdline()

� parse cmdline passed to kernel by bootloader


 kernel_main() (at last, your code!)


 printf(), if kernel_main() ever returns

� ...kernel main returned with code %d...
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PXE

	 Preboot Execution Environment

	 “How a PC should net boot”

� DHCP extensions to say

� “I am a PXE client of DHCP”

� “My machine ID is ... my hardware type is ...”

� DHCP server assigns IP address

� Instructs client: network settings, TFTP server, file

� Client downloads 2nd-stage boot via TFTP

	 PXE libraries for downloaded loader to use

� Ethernet, UDP, TFTP
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APM

	 Advanced Power Management

	 Problem – Laptop hardware is “special”

� Lots of power-critical hardware

� Totally different from one machine to another

� Disk spin-down (“standard” , so may be fairly easy)

� Display backlight, processor speed (not so easy)

� South bridge, DRAM controller, keyboard...


 Sequencing these in the right order is very machine-specific

	 Problem – user does things (close lid...)
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APM

	 Solution - “power kernel”

� OS asks it to control power hardware

� Power hardware tells OS about events

� Lid closed

� Battery low

	 Complex rules for messaging back and forth


 OS required to poll APM periodically


 May involve switch to 16-bit mode


 Suspend protocol: prepare/commit/abort...
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ACPI

	 Advanced Configuration & Power Interface


 APM's “big brother”

	 Good news


 OS gets more understanding, control


 BIOS provides state-transition tables

	 Bad news


 What the BIOS tells you is often wrong


 Lots of “patch the foo entry on machine bar” 
workarounds to actually use it
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“Big Iron”  (mainframes)

	 “Boot loader” may be a separate machine

� When main CPU powers on, it does not run code!

� “Front-end” tasks

� Run thorough diagnostics on main machine

� Store OS into its memory

� Set its program counter to entry point

� Turn on instruction fetching

� “Front-end” also contains a debugger

� Useful when your OS crashes
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Open Firmware

� Sun & Mac hardware (until June 2005, sigh)

� Goal: share devices across processor families

� Ethernet, SCSI disk controller, ...

� Solution

� Processor-independent BIOS modules on cards

� Collection of FORTH methods

� test, boot, open, close, read, write, etc.

� “Boot ROM” may contain a small debugger

� Sun, Mac do this... PCs are just starting to catch up
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EFI

� “Next big thing” in the PC world

� Including PC's made by Apple(!?)

� “Super sized” - #partitions, partition labels, ...

� More device drivers (not just disk, video)

� May be signed, certified, protected

� Many more interfaces, larger interfaces

� Lots of fun for the whole family

� Arriving mosty with x86-64 machines
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Summary

� It's a long, strange trip

� Power on: maybe no RAM, maybe no CPU!!

� Maybe beep, maybe draw a sad face

� Locate OS

� Load N stages

� Tell kernel about the machine and the boot params

� Provide support to kernel once it's running
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Further Reading

� More BIOS details

� http://www.pcguide.com/ref/mbsys/bios/bootSequence-c.html

� http://bioscentral.com/

� A real memory tester - memtest86.com

� Open-source BIOS!

� www.linuxbios.org

� openbios.info

� PXE ftp://download.intel.com/labs/manage/wfm/download/pxespec.pdf


