
15-410, S'06

File System (Internals)
Mar. 31, 2006
Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

Greg HartmanGreg Hartman

L26_Filesystem

15-410
“...Does this look familiar?...”

15-410, S'06- 2 -

Synchronization

Checkpoint 3 tonightCheckpoint 3 tonight

� Easy part: please turn in your bits by midnight

� Probably the most useful part – the STATUS file

� Count lines of code, estimate lines of code remaining

� What would it take to be done 3 days early?

� Reminder: don't do “code complete, then debug”
» Debug as you go
» When appropriate, start with “dummy” versions of

modules, replace with real implementations

� Details have been posted to the .announce bboard

15-410, S'06- 3 -

Synchronization

TodayToday

� Chapter 11 (not: Log-structured, NFS, WAFL)

15-410, S'06- 4 -

Outline

File system code layers (abstract)File system code layers (abstract)

Disk, memory structuresDisk, memory structures

Unix “VFS” layering indirectionUnix “VFS” layering indirection

DirectoriesDirectories

Block allocation strategies, free spaceBlock allocation strategies, free space

Cache tricksCache tricks

Recovery, backupsRecovery, backups

15-410, S'06- 5 -

File System Layers

Device driversDevice drivers

� read/write(disk, start-sector, count)

Block I/OBlock I/O

� read/write(partition, block) [cached]

File I/OFile I/O

� read/write (file, block)

File systemFile system

� manage directories, free space

15-410, S'06- 6 -

File System Layers

Multi-filesystem namespaceMulti-filesystem namespace

� Partitioning, names for devices

� Mounting

� Unifying multiple file system types

� UFS, ext2fs, ext3fs, reiserfs, FAT, 9660, ...

15-410, S'06- 7 -

Shredding Disks

Split disk into Split disk into partitionspartitions/slices/minidisks/.../slices/minidisks/...

� PC: 4 “partitions” – Windows, FreeBSD, Plan 9

� Mac: “volumes” – OS 9, OS X, system vs. user data

Or: glue disks together into Or: glue disks together into volumesvolumes/logical disks/logical disks

Partition may contain...Partition may contain...

� Paging area

� Indexed by in-memory structures

� “ random garbage” when OS shuts down

� File system

� Block allocation: file # ⇒ block list

� Directory: name ⇒ file #

15-410, S'06- 8 -

Shredding Disks

fdisk -s# fdisk -s

/dev/ad0: 993 cyl 128 hd 63 sec/dev/ad0: 993 cyl 128 hd 63 sec

Part Start Size Type FlagsPart Start Size Type Flags

 1: 63 1233729 0x06 0x00 1: 63 1233729 0x06 0x00

 2: 1233792 6773760 0xa5 0x80 2: 1233792 6773760 0xa5 0x80

15-410, S'06- 9 -

Shredding Disks

8 partitions:8 partitions:

size offset fstype [fsize bsize bps/cpg]# size offset fstype [fsize bsize bps/cpg]

 a: 131072 0 4.2BSD 2048 16384 101 # (Cyl. 0 - 16*) a: 131072 0 4.2BSD 2048 16384 101 # (Cyl. 0 - 16*)

 b: 393216 131072 swap # (Cyl. 16*- 65*) b: 393216 131072 swap # (Cyl. 16*- 65*)

 c: 6773760 0 unused 0 0 # (Cyl. 0 - 839) c: 6773760 0 unused 0 0 # (Cyl. 0 - 839)

 e: 65536 524288 4.2BSD 2048 16384 104 # (Cyl. 65*- 73*) e: 65536 524288 4.2BSD 2048 16384 104 # (Cyl. 65*- 73*)

 f: 6183936 589824 4.2BSD 2048 16384 89 # (Cyl. 73*- 839*) f: 6183936 589824 4.2BSD 2048 16384 89 # (Cyl. 73*- 839*)

Filesystem 1K-blocks Used Avail Capacity Mounted onFilesystem 1K-blocks Used Avail Capacity Mounted on

/dev/ad0s2a 64462 55928 3378 94% //dev/ad0s2a 64462 55928 3378 94% /

/dev/ad0s2f 3043806 2608458 191844 93% /usr/dev/ad0s2f 3043806 2608458 191844 93% /usr

/dev/ad0s2e 32206 7496 22134 25% /var/dev/ad0s2e 32206 7496 22134 25% /var

procfs 4 4 0 100% /procprocfs 4 4 0 100% /proc

(FreeBSD 4.7 on ThinkPad 560X)(FreeBSD 4.7 on ThinkPad 560X)

15-410, S'06- 10 -

Disk Structures

Boot area (first block/track/cylinder)Boot area (first block/track/cylinder)

� Interpreted by hardware bootstrap (“BIOS”)

� May include partition table

File system control blockFile system control block

� Key parameters: #blocks, metadata layout

� Unix: “superblock”

“File control block” (Unix: “ inode”)“File control block” (Unix: “ inode”)

� ownership/permissions

� data location

Possibly a freespace map as wellPossibly a freespace map as well

15-410, S'06- 11 -

Memory Structures

In-memory partition tablesIn-memory partition tables

� Sanity check file system I/O in correct partition

Cached directory informationCached directory information

System-wide open-file tableSystem-wide open-file table

� In-memory file control blocks

Process open-file tablesProcess open-file tables

� Open mode (read/write/append/...)

� “Cursor” (read/write position)

15-410, S'06- 12 -

VFS layer

GoalGoal

� Allow one machine to use multiple file system types

� Unix FFS

� MS-DOS FAT

� CD-ROM ISO9660

� Remote/distributed: NFS/AFS

� Standard system calls should work transparently

SolutionSolution

� Insert a level of indirection!

15-410, S'06- 13 -

Single File System

n = read(fd, buf, size)

INT 54

sys_read(fd, buf, len)

rdblk(dev, N)sleep() wakeup()

namei() iget() iput()

startIDE() IDEintr()

15-410, S'06- 14 -

VFS “Virtualization”

n = read(fd, buf, size)

INT 54

iget() iput()

vfs_read()

ufs_read() procfs_read()

procfs_domem()

namei()

ufs_lookup()

15-410, S'06- 15 -

VFS layer – file system operations

struct vfsops {
 char *name;
 int (*vfs_mount)();
 int (*vfs_statfs)();
 int (*vfs_vget)();
 int (*vfs_unmount)();
 ...
}

15-410, S'06- 16 -

VFS layer – file operations

Each VFS provides an array of methodsEach VFS provides an array of methods

� VOP_LOOKUP(vnode, new_vnode, name)

� VOP_CREATE(vnode, new_vnode, name, attributes)

� VOP_OPEN(vnode, mode, credentials, process)

� VOP_READ(vnode, uio, readwrite, credentials)

Operating system provides fs-independent codeOperating system provides fs-independent code

� Validating system call parameters

� Moving data from/to user memory

� Thread sleep/wakeup

� Caches (data blocks, name ⇒ inode mappings)

15-410, S'06- 17 -

Directories

namei() -> fs interfacenamei() -> fs interface

� vnode2 = VOP_LOOKUP(vnode1, name)

Traditional Unix FFS directoriesTraditional Unix FFS directories

� List of (name,inode #) - not sorted!

� Names are variable-length

� Lookup is linear

� How long does it take to delete N files?

Common alternative: hash-table directoriesCommon alternative: hash-table directories

15-410, S'06- 18 -

Allocation / Mapping

Allocation problemAllocation problem

� Where do I put the next block of this file?

� Near the previous block?

Mapping problemMapping problem

� Where is block 32 of this file?

� Similar to virtual memory

� Multiple large “address spaces” specific to each file

� Only one underlying “address space” of blocks

� Source address space may be sparse!

15-410, S'06- 19 -

Allocation – Contiguous

ApproachApproach

� File location defined as (start, length)

MotivationMotivation

� Sequential disk accesses are cheap

� Bookkeeping is easy

IssuesIssues

� Dynamic storage allocation (fragmentation, compaction)

� Must pre-declare file size at creation

� This should sound familiar

15-410, S'06- 20 -

Allocation – Linked

ApproachApproach

� File location defined as (start)

� Each disk block contains pointer to next

MotivationMotivation

� Avoid fragmentation problems

� Allow file growth

Issues?Issues?

15-410, S'06- 21 -

Allocation – Linked

IssuesIssues

� 508-byte blocks don't match memory pages

� In general, one seek per block read/written - slow!

� Very hard to access file blocks at random

� lseek(fd, 37 * 1024, SEEK_SET);

BenefitBenefit

� Can recover files even if directories destroyed

Common modificationCommon modification

� Linked multi-block clusters, not blocks

15-410, S'06- 22 -

Allocation – FAT

Used by MS-DOS, OS/2, WindowsUsed by MS-DOS, OS/2, Windows

� Digital cameras, GPS receivers, printers, PalmOS, ...

Semantically same as linked allocationSemantically same as linked allocation

Links stored “out of band” in tableLinks stored “out of band” in table

� Result: nice 512-byte sectors for data

Table at start of diskTable at start of disk

� Next-block pointer array

� Indexed by block number

� Next=0 means “ free”

15-410, S'06- 23 -

Allocation – FAT

-1

-1
0
-1
3

5
2
7

hello.jav

 dir. c

0

1

 sys.ini 4

15-410, S'06- 24 -

Allocation - FAT

-1

-1
0
-1
3

5
2
7

hello.jav

 dir. c

0

1

 sys.ini 4

15-410, S'06- 25 -

Allocation - FAT

-1

-1
0
-1
3

5
2
7

hello.jav

 dir. c

0

1

 sys.ini 4

15-410, S'06- 26 -

Allocation - FAT

-1

-1
0
-1
3

5
2
7

hello.jav

 dir. c

0

1

 sys.ini 4

hello.jav: 0, 7

15-410, S'06- 27 -

Allocation – FAT

IssuesIssues

� Damage to FAT scrambles entire disk

� Solution: backup FAT

� Generally two seeks per block read/write

� Seek to FAT, read, seek to actual block (repeat)

� Unless FAT can be cached well in RAM

� Still very hard to access random file blocks

� Linear time to walk through FAT

15-410, S'06- 28 -

Allocation – Indexed

MotivationMotivation

� Avoid fragmentation
problems

� Allow file growth

� Improve random access

ApproachApproach

� Per-file block array

3001

-1
-1
-1

3002

101
100
99

-1

-1
-1
-1

6002

-1
-1

3004

15-410, S'06- 29 -

Allocation – Indexed

Allows “holes”Allows “holes”

� foo.c is sequential

� foo.db, blocks 1..3 ⇒ -1

	 logically “blank”

“sparse allocation”“sparse allocation”

� a.k.a. “holes”

� read() returns nulls

� write() requires alloc

� file “size” ≠ file “size”

	 ls -l index of last byte

	 ls -s number of blocks

3001

-1
-1
-1

3002

101
100
99

-1

-1
-1
-1

6002

-1
-1

3004
foo.c foo.db

15-410, S'06- 30 -

Allocation – Indexed

How big should index block be?How big should index block be?

� Too small: limits file size

� Too big: lots of wasted pointers

Combining index blocksCombining index blocks

� Linked

� Multi-level

� What Unix actually does

15-410, S'06- 31 -

Linked Index Blocks

Last pointer indicates Last pointer indicates
next index blocknext index block

SimpleSimple

Access is not-so-randomAccess is not-so-random

� O(n/c) is still O(n)

� O(n) disk transfers

3001

45789
10460
10459
3002

101
100
99

-1

-1
-1
-1
-1

10463
10462
10461

15-410, S'06- 32 -

Multi-Level Index Blocks

Index blocks of index Index blocks of index
blocksblocks

Does this look familiar?Does this look familiar?

Allows Allows bigbig holes holes

10461
10460
10459
3002
3001
101
100
99

-1
-1

9988
9987

15-410, S'06- 33 -

Unix Index Blocks

IntuitionIntuition

 Many files are small

	 Length = 0, length = 1, length < 80, ...

 Some files are huge (3 gigabytes)

“Clever heuristic” in Unix FFS inode“Clever heuristic” in Unix FFS inode

 inode struct contains 12 “direct” block pointers

	 12 block numbers * 8 KB/block = 96 KB

	 Availability is “ free” - must read inode to open() file anyway

 3 indirect block pointers

	 single, double, triple

15-410, S'06- 34 -

Unix Index Blocks

106
105

501
502

102
101

16
15

18
17

500
100

1000 104
103

20
19

22
21

24
23

26
25

28
27

30
29

32
31

15-410, S'06- 35 -

Unix Index Blocks

16
15

18
17

-1
-1

-1

Direct blocks

Indirect pointer
Double-indirect
Triple-indirect

15-410, S'06- 36 -

Unix Index Blocks

16
15

18
17

-1
100

-1

20
19

15-410, S'06- 37 -

Unix Index Blocks

102
101

16
15

18
17

500
100

-1

20
19

22
21

24
23

15-410, S'06- 38 -

Unix Index Blocks

106
105

501
502

102
101

16
15

18
17

500
100

1000 104
103

20
19

22
21

24
23

26
25

28
27

30
29

32
31

15-410, S'06- 39 -

Tracking Free Space

Bit-vectorBit-vector

 1 bit per block: boolean “ free”

 Check each word vs. 0

 Use “ first bit set” instruction

 Text example

� 1.3 GB disk, 512 B sectors: 332 KB bit vector

Need to keep (much of) it in RAMNeed to keep (much of) it in RAM

15-410, S'06- 40 -

Tracking Free Space

Linked listLinked list

 Superblock points to first free block

 Each free block points to next

Cost to allocate N blocks is linearCost to allocate N blocks is linear

 Free block can point to multiple free blocks

� 512 bytes = 128 (4-byte) block numbers

 FAT approach provides free-block list “ for free”

Keep free-Keep free-extentextent lists lists

 (block,sequential-block-count)

15-410, S'06- 41 -

Unified Buffer Cache

Seems silly to double-cache vmem pagesSeems silly to double-cache vmem pages

 Page cache, file-system cache often totally independent

� Page cache chunks according to hardware page size

� File cache chunks accoding to “ file system block” size

� Different code, different RAM pools

� How much RAM to devote to each one?

ObservationObservation

� Why not have just one cache?

� Mix automatically varies according to load

15-410, S'06- 42 -

Robert A. Gingell, Joseph P. Moran, and William A. Robert A. Gingell, Joseph P. Moran, and William A.
Shannon. Virtual memory architecture in sunos. In Shannon. Virtual memory architecture in sunos. In
Proceedings of the USENIX 1987 Summer ConferenceProceedings of the USENIX 1987 Summer Conference, ,
pages 81-94, Phoenix, Arizona, 1987.pages 81-94, Phoenix, Arizona, 1987.

“The work has consumed approximately four man-years “The work has consumed approximately four man-years
of effort over a year and a half of real time. A of effort over a year and a half of real time. A
surprisingly large amount of effort has been drained surprisingly large amount of effort has been drained
by efforts to interpose the VM system as the logical by efforts to interpose the VM system as the logical
cache manager for the file systems…”cache manager for the file systems…”

15-410, S'06- 43 -

Cache tricks

Read-aheadRead-ahead
for (i = 0; i < filesize; ++i)
 putc(getc(infile), outfile);

� System observes sequential reads

� can pipeline reads to overlap “computation” , read latency

Free-behindFree-behind

� Discard buffer from cache when next is requested

� Good for large files

� “Anti-LRU”

15-410, S'06- 44 -

Recovery

System crash...now what?System crash...now what?

� Some RAM contents were lost

� Free-space list on disk may be wrong

� Scan file system

� Check invariants
» Unreferenced files
» Double-allocated blocks
» Unallocated blocks

� Fix problems
» Expert user???

15-410, S'06- 45 -

Backups

Incremental approachIncremental approach

� Monthly: dump entire file system

� Weekly: dump changes since last monthly

� Daily: dump changes since last weekly

Merge approach - www.teradactyl.comMerge approach - www.teradactyl.com

� Collect changes since yesterday

� Scan file system by modification time

� Two tape drives merge yesterday's tape, today's delta

15-410, S'06- 46 -

Summary

Block-mapping problemBlock-mapping problem

� Similar to virtual-to-physical mapping for memory

� Large, often-sparse “address” spaces

 “Holes” not the common case, but not impossible

� Map any “ logical address” to any “physical address”

� Key difference: file maps often don't fit in memory

“ Insert a level of indirection”“ Insert a level of indirection”

� Multiple file system types on one machine

� Grow your block-allocation map

� ...

