15-410

“..Does this look familiar?...”

File System (Internals)
Mar. 31, 2006

Dave Eckhardt
Bruce Maggs
Greg Hartman

L26_Filesystem 15-410, S'06

Synchronization

Checkpoint 3 tonight
= Easy part: please turn in your bits by midnight

= Probably the most useful part —the STATUS file
= Count lines of code, estimate lines of code remaining
= What would it take to be done 3 days early?
= Reminder: don't do “code complete, then debug”
» Debug as you go
» When appropriate, start with “dummy” versions of
modules, replace with real implementations

= Details have been posted to the .announce bboard

0. 15-410, S'06

Synchronization

Today
= Chapter 11 (not: Log-structured, NFS, WAFL)

15-410, S'06

Outline

File system code layers (abstract)
Disk, memory structures

Unix “VFS” layering indirection
Directories

Block allocation strategies, free space
Cache tricks

Recovery, backups

15-410, S'06

File System Layers

Device drivers
= read/write(disk, start-sector, count)

Block I/O

= read/write(partition, block) [cached]

File /O

= read/write (file, block)

File system
= manage directories, free space

15-410, S'06

File System Layers

Multi-filesystem namespace
= Partitioning, names for devices
= Mounting
= Unifying multiple file system {ypes
= UFS, ext2fs, ext3fs, reiserfs, FAT, 9660, ...

_6- 15-410, S'06

Shredding Disks

Split disk into partitions/slices/minidisks/...
- PC: 4 “partitions” — Windows, FreeBSD, Plan 9
- Mac: “volumes” — OS 9, OS X, system vs. user data

Or: glue disks together into volumes/logical disks

Partition may contain...
- Paging area
* Indexed by in-memory structures
* “random garbage” when OS shuts down
- File system
* Block allocation: file # = block list
* Directory: name = file #

_7 15-410, S'06

Shredding Disks

fdisk -s

/dev/ad0: 993 cyl 128 hd 63 sec

Part Start Size Type Flags
1: 63 1233729 0x06 0x00

2: 1233792 6773760 0xaS 0x80

15-410, S'06

Shredding Disks

_0.

8 partitions:
size
a: 131072
b 393216
c: 6773760
e 65536
£ 6183936

offset
0
131072
0
524288
589824

Filesystem 1K-blocks

/dev/ad0s2a
/dev/ad0s2f
/dev/ad0s2e

procfs

fstype
4.2BSD

swap
unused
4.2BSD
4.2BSD

Used Avail Capacity

(FreeBSD 4.7 on ThinkPad 560X)

[Esize bsize bps/cpg]

2048 16384

0 0
2048 16384
2048 16384

64462 55928 3378 94%
3043806 2608458 191844 93%
32206 7496 22134 25%

4 4 0 100%

101

104
89

#

= g d= ==

(Cyl.
(Cyl.
(Cyl.
(Cyl.
(Cyl.

Mounted on

/
/usr
/var

/proc

0 - 16%)
16*- 65*)
0 - 839)
65%— 73%)
73*- 839%*)

15-410, S'06

Disk Structures

Boot area (first block/track/cylinder)
= Interpreted by hardware bootstrap (“BIOS”)
= May include partition table

File system control block
= Key parameters: #blocks, metadata layout
= Unix: “superblock”

“File control block” (Unix: “inode”)
= owhership/permissions
= data location

Possibly a freespace map as well
- 10 -

15-410, S'06

Memory Structures

In-memory partition tables
= Sanity check file system 1/O in correct partition

Cached directory information

System-wide open-file table
= In-memory file control blocks

Process open-file tables
= Open mode (read/write/append....)
= “Cursor” (read/write position)

“11 -

15-410, S'06

VFS layer

Goal
= Allow one machine to use multiple file system fypes
= Unix FFS
= MS-DOS FAT

= CD-ROM IS09660
= Remote/distributed: NFS/AFS

= Standard system calls should work transparently

Solution
= |nsert a level of indirection!

-12 -

15-410, S'06

Single File System

15-410, S'06

VES “Virtualization”

‘namei() [Vfsread()
‘ufs_read() procfs_read()
_ procfs_domem()

iget() iput()

_14 - 15-410, S'06

VFS layer — file system operations

_15-

struct vfsops {
char *name;
int (*vfs_mount) ();
int (*vfs_statfs) ();
int (*vfs_vget) () ;

int (*v£fs_unmount) () ;

15-410, S'06

VFS layer — file operations

Each VFS provides an array of methods
VOP_LOOKUP(vhode, new_vnode, name)
VOP_CREATE(vnode, new_vnode, name, attributes)
VOP_OPEN(vnode, mode, credentials, process)
VOP_READ(vnode, uio, readwrite, credentials)

Operating system provides fs-independent code
= Validating system call parameters
= Moving data from/to user memory
= Thread sleep/wakeup
= Caches (data blocks, name = inode mappings)

- 16 - 15-410, S'06

Directories

namei() -> fs interface
= vhode2 = VOP_LOOKUP(vhode1, name)

Traditional Unix FFS directories
= List of (hname,inode #) - not sorted!
= Names are variable-length
= Lookup is linear
= How long does it take to delete N files?

Common alternative: hash-table directories

_17 -

15-410, S'06

Allocation / Mapping

Allocation problem
= Where do | put the next block of this file?
= Near the previous block?

Mapping problem
= Where is block 32 of this file?

= Similar to virtual memory
= Multiple large “address spaces” specific to each file
= Only one underlying “address space” of blocks
= Source address space may be sparse!

_ 18 -

15-410, S'06

Allocation — Contiguous

Approach

= File location defined as (start, length)

Motivation
= Sequential disk accesses are cheap
= Bookkeeping is easy

Issues
= Dynamic storage allocation (fragmentation, compaction)
= Must pre-declare file size at creation
= This should sound familiar

- 19 - 15-410, S'06

Allocation — Linked

Approach
= File location defined as (start)
= Each disk block contains pointer to next

Motivation
= Avoid fragmentation problems
= Allow file growth

Issues?

-20 -

15-410, S'06

Allocation — Linked

Issues
= 508-byte blocks don't match memory pages
= |n general, one seek per block read/written - s/ow!/

= Very hard to access file blocks at random
= Iseek(fd, 37 * 1024, SEEK_SET);

Benefit
= Can recover files even if directories destroyed

Common modification
= Linked multi-block cl/usters, not blocks

-21 -

15-410, S'06

Allocation — FAT

Used by MS-DOS, 0S/2, Windows

= Digital cameras, GPS receivers, printers, PalmOS, ...
Semantically same as linked allocation

Links stored “out of band” in table
= Result: nice 512-byte sectors for data

Table at start of disk

= Next-block pointer array
= Indexed by block number
= Next=0 means “free”

_09 15-410, S'06

Allocation — FAT

_23 .

15-410, S'06

Allocation - FAT

_24 -

15-410, S'06

Allocation - FAT

_95 -

15-410, S'06

Allocation - FAT

hello.jav: 0, 7

- 26 - 15-410, S'06

Allocation — FAT

Issues

= Damage to FAT scrambles entire disk
= Solution: backup FAT

= Generally iwo seeks per block read/write

= Seek to FAT, read, seek to actual block (repeat)
= Unless FAT can be cached well in RAM

= Still very hard to access random file blocks
= Linear time to walk through FAT

_07 -

15-410, S'06

Allocation — Indexed

Motivation

= Avoid fragmentation
problems

= Allow file growth
= Improve random access

Approach

= Per-file block array

_08 -

15-410, S'06

Allocation — Indexed

Allows “holes”
= foo.c is sequential

= foo.db, blocks 1..3 = -1
= logically “blank”

“sparse allocation”
= a.k.a. “holes”
= read() returns nulls
= write() requires alloc
= file “size” # file “size”
= Is -l index of last byte
= |s -s number of blocks

_29 .

15-410, S'06

Allocation — Indexed

How big should index block be?
= Too small: limits file size
= Too big: lots of wasted pointers

Combining index blocks
= Linked
= Multi-level
= What Unix actually does

-30 -

15-410, S'06

Linked Index Blocks

Last pointer indicates
next index block

Simple

Access is not-so-random
= O(n/c) is still O(n)
= O(n) disk transfers

_31 -

15-410, S'06

Multi-Level Index Blocks

Index blocks of indeXx
blocks

Does this look familiar?
Allows big holes

32

15-410, S'06

Unix Index Blocks

Intuition

= Many files are small
= Length =0, length = 1, length < 80, ...

= Some files are huge (3 gigabytes)

“Clever heuristic” in Unix FFS inode

= inode struct contains 12 “direct” block pointers
= 12 block numbers * 8 KB/block = 96 KB
= Availability is “free” - must read inode to open() file anyway

= 3 indirect block pointers
= single, double, triple

233 15-410, S'06

Unix Index Blocks

15 19 21 25

16 20 22 26
17 27
8 28
500

1000—y- 2%

502

29
30

11

;

31
32

_34 - 15-410, S'06

Unix Index Blocks

_135.-

——Direct blocks

——|ndirect pointer

)0 uble-indirect

—Triple-indirect

15-410, S'06

Unix Index Blocks

- 36 -

19

20

15-410, S'06

Unix Index Blocks

237 -

15

19

16

21

22

17

18
500 rJ
-1

;—I‘

23

24

15-410, S'06

Unix Index Blocks

15 19 21 25

16 20 22 26
17 27
8 28
500

1000—y- 2%

502

29
30

11

;

31
32

_38 - 15-410, S'06

Tracking Free Space

Bit-vector
= 1 bit per block: boolean “free”

= Check each word vs. 0
= Use “first bit set” instruction

= Text example
= 1.3 GB disk, 512 B sectors: 332 KB bit vector

Need to keep (much of) it in RAM

-39

15-410, S'06

Tracking Free Space

Linked list

= Superblock points to first free block
= Each free block points to next

Cost to allocate N blocks is linear

= Free block can point to muliiple free blocks
= 512 bytes = 128 (4-byte) block nhumbers

= FAT approach provides free-block list “for free”

Keep free-extent lists
= (block,sequential-block-count)

_ 40 -

15-410, S'06

Unified Buffer Cache

Seems silly to double-cache vmem pages

= Page cache, file-system cache often totally independent
= Page cache chunks according to hardware page size
= File cache chunks accoding to “file system block” size
= Different code, different RAM pools

= How much RAM to devote to each one?

Observation

= Why not have just one cache?
= Mix automatically varies according to load

_41 - 15-410, S'06

Robert A. Gingell, Joseph P. Moran, and William A.
Shannon. Virtual memory architecture in sunos. In
Proceedings of the USENIX 1987 Summer Conference,
pages 81-94, Phoenix, Arizona, 1987.

“The work has consumed approximately four man-years
of effort over a year and a half of real time. A
surprisingly large amount of effort has been drained
by efforts to interpose the VM system as the logical
cache manager for the file systems...”

_40 - 15-410, S'06

Cache tricks

Read-ahead
for (i = 0; 1 < filesize; ++1i)
putc (getc(infile), outfile);

= System observes sequential reads
= can pipeline reads to overlap “computation”, read latency

Free-behind

= Discard buffer from cache when next is requested
= Good for large files
= “Anti-LRU”

-43 - 15-410, S'06

Recovery

System crash...now what?
= Some RAM contents were lost
= Free-space list on disk may be wrong

= Scan file system
= Check invariants
» Unreferenced files
» Double-allocated blocks
» Unallocated blocks
= Fix problems
» Expert user???

_44 -

15-410, S'06

Backups

Incremental approach
= Monthly: dump entire file system
= Weekly: dump changes since last monthly
= Daily: dump changes since last weekly

Merge approach - www.teradactyl.com

= Collect changes since yesterday
= Scan file system by modification time

= Two tape drives merge yesterday's tape, today's delta

_45 - 15-410, S'06

Summary

Block-mapping problem
= Similar to virtual-to-physical mapping for memory

= Large, often-sparse “address” spaces
= “Holes” not the common case, but not impossible

= Map any “logical address” to any “physical address”
= Key difference: file maps often don't fit in memory

“Insert a level of indirection”
= Multiple file system types on one machine
= Grow your block-allocation map

_46 - 15-410, S'06

