
15-410, S’06

File System (Interface)
Mar. 29, 2006
Greg HartmanGreg Hartman

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

Contributions from Rahul IyerContributions from Rahul Iyer

L26_Filesystem

/../15/410

15-410, S’06- 2 -

Synchronization

TodayToday
� Chapter 10, File system interface

� Ok to skip: remote/distributed (10.5.2!!)

15-410, S’06- 3 -

Synchronization
Two interesting papers about disksTwo interesting papers about disks

� http://www.seagate.com/content/docs/pdf/whitepaper/D2c_Mo
re_than_Interface_ATA_vs_SCSI_042003.pdf

� Google for “200 ways to revive a hard drive”

15-410, S’06- 4 -

Disks aren’t enough
Users want to:Users want to:

� Store multiple files on a disk
� Disks have a global list of blocks

� Protect files from unauthorized access
� Disks allow access to any block

� Retrieve these files quickly
� Disks only perform well with certain access patterns

� Reference the files with sensible names and group files
� Have blocks referenced by number

15-410, S’06- 5 -

Disks do provide blocks
Lots and lots of inexpensive blocksLots and lots of inexpensive blocks

� The going price is about 61,035,156 / $95.00
� Assumes 4096 bytes/block. Taxes, shipping, and handling extra

Filesystems steal some of the blocksFilesystems steal some of the blocks
� We call this “storing metadata”

� Consumes about 7% of the blocks

to give us what we really want from disksto give us what we really want from disks

15-410, S’06- 6 -

Types of filesystem metadata
Mapping between files and blocksMapping between files and blocks

Allows multiple files on a disk

Access control listsAccess control lists
Protects files from unauthorized access

Freespace listsFreespace lists
Allows files to grow and shrink, and be recycled

DirectoriesDirectories
Provide naming and grouping of files

15-410, S’06- 7 -

Additional metadata
Per filePer file

� Identifier - “file number” aka inode
� Type (or not)
� Location – device, block list
� Size – real or otherwise
� Time, date, last modifier – monitoring, curiosity

Per filesystemPer filesystem
� Quotas: space available/consumed per user

15-410, S’06- 8 -

“Extended” file attributes
BSD UnixBSD Unix

� archived
� nodump
� append-only (by user/by operating system)
� immutable (by user/by operating system)

MacOSMacOS
� Application that created the file (Creator)

Plan 9Plan 9
� Identity of most recent mutator

15-410, S’06- 9 -

Metadata

15-410, S’06- 10 -

Use of metadata takes time
String lookups take a long timeString lookups take a long time

Most operations in the interface read or write metadataMost operations in the interface read or write metadata

Solution: memoizationSolution: memoization
� Do the hard work once
� Save the answer in a table
� Refer to the answer with a convenient handle when needed
� Provide a way to free the answer when done

15-410, S’06- 11 -

Memos applied to filesystems
Expensive string lookups happen in Expensive string lookups happen in open()open()

� Saves a lot of stuff in the file descriptor table:
� File-system / partition
� File-system-relative file number
� Read vs. write
� Cursor position
� In memory copies of frequently accessed metadata

Open returns the index for the file in the tableOpen returns the index for the file in the table

close()close() releases the data from the table releases the data from the table

15-410, S’06- 12 -

Problem: maintaining consistency
Consider three unrelated processes:Consider three unrelated processes:

� Process A opens F read-only
� Processes B and C open F read-write

The filesystem should enforce:The filesystem should enforce:
� A can’t write to F
� A can see updates made by B
� Simultaneous changes to the file should not corrupt state

Solution: split memos into shared and semi-shared partsSolution: split memos into shared and semi-shared parts

15-410, S’06- 13 -

Shared state (Unix Model)
Mirror of on-disk structureMirror of on-disk structure

� File number, size, permissions, modification time, ...

Housekeeping infoHousekeeping info
� Back pointer to enclosing file system
� Pointer to disk device hosting the file
� Who holds locks on ranges of file

How to access file (vector of methods)How to access file (vector of methods)

15-410, S’06- 14 -

Semi-shared state (Unix Model)
Shared by Shared by relatedrelated processes processes

� “copied” by fork() and inherited across exec()

Access mode (read vs. write, auto-append, ...)Access mode (read vs. write, auto-append, ...)

Credentials of process (when it opened the file)Credentials of process (when it opened the file)

Cursor positionCursor position

Pointer to the shared statePointer to the shared state

15-410, S’06- 15 -

Example
int fd1,fd2,child;int fd1,fd2,child;

off_t pos1, pos2;off_t pos1, pos2;

char buf[10];char buf[10];

fd1 = open(“foo.c”, O_RDONLY, 0);fd1 = open(“foo.c”, O_RDONLY, 0);

fd2 = open(“foo.c”, O_RDONLY, 0);fd2 = open(“foo.c”, O_RDONLY, 0);

if (!(child=fork())) {if (!(child=fork())) {

 read(fd1, &buf, sizeof (buf)); read(fd1, &buf, sizeof (buf));

 exit(0); exit(0);

} else {} else {

 waitpid(child, NULL, 0); waitpid(child, NULL, 0);

 pos1 = lseek(fd1, 0L, SEEK_CUR);/*10*/ pos1 = lseek(fd1, 0L, SEEK_CUR);/*10*/

 pos2 = lseek(fd2, 0L, SEEK_CUR);/*0*/ pos2 = lseek(fd2, 0L, SEEK_CUR);/*0*/

15-410, S’06- 16 -

Child 0
1
2

fd1 3
fd2 4

Parent 0
1
2

fd1 3
fd2 4

r/o
Pos=?

r/w
Pos=?

Tty #5
References: 2

Shared State

Semi-shared State

15-410, S’06- 17 -

Child 0
1
2

fd1 3
fd2 4

r/o
Pos=0

Parent 0
1
2

fd1 3
fd2 4

r/o
Pos=?

r/w
Pos=?

Tty #5
References: 2

Vnode #334
References 1

fd1 = open(“foo.c”, O_RDONLY, 0);fd1 = open(“foo.c”, O_RDONLY, 0);

15-410, S’06- 18 -

Child 0
1
2

fd1 3
fd2 4

r/o
Pos=0

Parent 0
1
2

fd1 3
fd2 4

r/o
Pos=?

r/w
Pos=?

Tty #5
References: 2

Vnode #334
References 2

r/o
Pos=0

fd2 = open(“foo.c”, O_RDONLY, 0);fd2 = open(“foo.c”, O_RDONLY, 0);
fork(); waitpid(child, NULL, 0);fork(); waitpid(child, NULL, 0);

15-410, S’06- 19 -

read(fd1, &buf, sizeof (buf));read(fd1, &buf, sizeof (buf));

exit(0);exit(0);

15-410, S’06- 20 -

Child 0
1
2

fd1 3
fd2 4

r/o
Pos=0

Parent 0
1
2

fd1 3
fd2 4

r/o
Pos=?

r/w
Pos=?

Tty #5
References: 2

Vnode #334
References 2

r/o
Pos=10

r/o
Pos=0

pos1 = lseek(fd1, 0L, SEEK_CUR);/*10*/pos1 = lseek(fd1, 0L, SEEK_CUR);/*10*/

pos2 = lseek(fd2, 0L, SEEK_CUR);/*0*/pos2 = lseek(fd2, 0L, SEEK_CUR);/*0*/

15-410, S’06- 21 -

File types (or not)
GoalGoal

� Avoid printing a binary executable file
� Find program which “understands” a file selected by user

Derive “type” from file namesDerive “type” from file names
� *.exe are executable, *.c are C

Store type in metadataStore type in metadata
� MacOS: 4-byte type, 4-byte creator

Unix: file name/neither – Leave it (mostly) up to usersUnix: file name/neither – Leave it (mostly) up to users

15-410, S’06- 22 -

File Structure
What's in a file?What's in a file?

� Stream of bytes?
� Text?

� What character set? US-ASCII? Roman-1? Unicode?
� Records?

Record structure?Record structure?
� Fixed-length? Varying? Bounded?

15-410, S’06- 23 -

File Structure - Unix
Program loader needs to know about executablesProgram loader needs to know about executables

� “Magic numbers” in first two bytes
� obsolete A.OUT types - OMAGIC, NMAGIC, ZMAGIC
� ELF
� #! - script

Otherwise, array of bytesOtherwise, array of bytes
� User/application remembers meaning (hopefully!)

Advantage: easy to create new file formatsAdvantage: easy to create new file formats

Disadvantage: identifying files becomes difficultDisadvantage: identifying files becomes difficult
� Try the “file” command
� Read /usr/share/magic

� Marvel at the dedication of the masses

15-410, S’06- 24 -

File Structure – MacOS
Data forkData fork

� Array of bytes
� Application-dependent structure

Resource forkResource fork
� Table of resources

� Indexed by type and sequence number
� For example, Icon #3, Menu #2, Window #3, Dialog box #4

� Many types are widely used & understood
� Finder displays icons from resource fork

A good compromise between flexibility and structureA good compromise between flexibility and structure

15-410, S’06- 25 -

Access Methods
Provided by OS or optional program libraryProvided by OS or optional program library

SequentialSequential
� Like a tape
� read() next, write() next, rewind()
� Sometimes: skip forward/backward

Direct/relativeDirect/relative
� Array of fixed-size records
� Read/write any record, by #

15-410, S’06- 26 -

Access Methods – Indexed
File contains recordsFile contains records

Records contain keysRecords contain keys

Index maps keys Index maps keys ⇒⇒ records records
� Sort data portion by key
� Binary search in multi-level list

Fancy extensionsFancy extensions
� Multiple keys, multiple indices
� Are we having a database yet?

� Missing: relations, triggers, consistency, transactions, ...
� Unix equivalent: dbm/ndbm/gdbm/bdb/...

15-410, S’06- 27 -

Filesystem Interface (Unix model)
Create – locate space, enter into directoryCreate – locate space, enter into directory

Write, Read – according to position pointer/cursorWrite, Read – according to position pointer/cursor

Seek – adjust position pointerSeek – adjust position pointer

Delete – remove from directory, release spaceDelete – remove from directory, release space

TruncateTruncate
� Trim data from end
� Often all of it

Append, RenameAppend, Rename

15-410, S’06- 28 -

Directory Operations
Lookup(inode, “index.html”)Lookup(inode, “index.html”)

Iterate over directory contentsIterate over directory contents

Create(“index.html”)Create(“index.html”)

Delete(“index.html”)Delete(“index.html”)

Rename(“index.html”, “index.html~”)Rename(“index.html”, “index.html~”)

Scan file systemScan file system
� Unix find command
� Backup program

15-410, S’06- 29 -

Directory Types
Single-levelSingle-level

� Flat global namespace – only one test.c
� Ok for floppy disks (maybe)

Two-levelTwo-level
� Every user has a directory
� One test.c per user

� [1003,221]PROFILE.CMD vs. [1207,438]PROFILE.CMD
� Typical of early timesharing

Are we having fun yet?Are we having fun yet?

15-410, S’06- 30 -

Tree Directories
Absolute PathnameAbsolute Pathname

� Sequence of directory names
� Starting from “root”
� Ending with a file name

15-410, S’06- 31 -

Tree Directories

/

afs usr home

db bmm gsh
ece.

cmu.edu
cs.

cmu.edu

15-410, S’06- 32 -

Tree Directories
Directories are special filesDirectories are special files

� Created with special system calls – mkdir()
� Format understood, maintained by OS

Current directory (“.”)Current directory (“.”)
� “Where I am now”
� Start of relative pathname

� ./stuff/foo.c aka stuff/foo.c
� ../joe/foo.c aka /usr/joe/foo.c

� Directory reference cached in user library or kernel
� e.g., p->p_fd->fd_cdir

15-410, S’06- 33 -

DAG Directories
Share files and directories between usersShare files and directories between users

Not mine, not yours: Not mine, not yours: oursours

Destroy when Destroy when everybodyeverybody deletes deletes

Files with no links exist until closedFiles with no links exist until closed

Difficult for users to predict behaviorDifficult for users to predict behavior
� Unlink and create breaks the link
� Open and truncate preserves it
� Both are reasonable choices

Unix “hard link”Unix “hard link”
� Files, not directories

� (“.. problem”)

usr

mji

/

paper.ms

owens

15-410, S’06- 34 -

The “.. Problem”

Foo

Bar

$ ln .. bar

15-410, S’06- 35 -

Soft links
Hard links “too hard”?Hard links “too hard”?

� Need a level of indirection in file system?
� No “one true name” for a file

Alternative: soft link / symbolic link / “short cut”Alternative: soft link / symbolic link / “short cut”
� Tiny file, special type
� Contains name of another file
� OS dereferences link when you open() it

15-410, S’06- 36 -

Hard vs. Soft Links
Hard linksHard links

� Enable reference-counted sharing
� No name is “better” than another

Soft linksSoft links
� Can soft-link a directory

� one “true” parent, so no “.. problem”
� Work across file system & machine boundaries
� Easier to explain
� “Dangling link” problem

� Owner of “one true file” can delete it
� Soft links now point to nothing

15-410, S’06- 37 -

Graph Directories
Depth-first traversal can be slow!Depth-first traversal can be slow!

May need May need realreal garbage collection garbage collection

Do we really need this?Do we really need this? usr

mji

/

owens

top

alice

tom

bob

15-410, S’06- 38 -

Mounting
Multiple disks on machineMultiple disks on machine

Multiple partitions on diskMultiple partitions on disk

Single file system within a partitionSingle file system within a partition
� Or, within a volume / logical volume / ...

How to name files in “another” file system?How to name files in “another” file system?
� Wrong way

� C:\temp vs. D:\temp
� [1003,221]PROFILE.CMD vs. [1207,438]PROFILE.CMD

15-410, S’06- 39 -

Mounting

usr

/

afs home

15-410, S’06- 40 -

Mounting

usr

/

afs home

ece.
cmu.edu

cs.
cmu.edu

afs

15-410, S’06- 41 -

Mounting

usrusr

db

/

afs home

ece.
cmu.edu

cs.
cmu.edu

afs

bmm gsh

home

15-410, S’06- 42 -

Mounting

usrusr

db

/

afs home

db
ece.

cmu.edu
cs.

cmu.edu

afs

bmm gsh

home

15-410, S’06- 43 -

Multiple Users
Users want to share filesUsers want to share files

What's a user?What's a user?
� Strings can be cumbersome
� Integers are nicer for OS to compare
� Unix: User ID / “uid”
� Windows: Security ID / “SID”

What's a group?What's a group?
� A set of users
� Typically has its own gid / SID

15-410, S’06- 44 -

Protection
Override “bit” (e.g., MS-DOS)Override “bit” (e.g., MS-DOS)

� Bit says “don't delete this file”
� Unless I clear the bit

Per-file passwordsPer-file passwords
� Annoying in a hurry

Per-directory passwordsPer-directory passwords
� Still annoying

15-410, S’06- 45 -

Protection
Access modesAccess modes

� Read, Write, Execute, Append, Delete, List, Lock, ...

Access Control List (ACL)Access Control List (ACL)
� File stores list of (user, modes) tuples
� Cumbersome to store, view, manage

Capability systemCapability system
� User is given a list of (file, access keys) tuples
� Revocation problem

15-410, S’06- 46 -

Protection – typical
File specifies owner, groupFile specifies owner, group

� Permissions for owner, permissions for group members
� Read, write, ...

� Permissions for “other” / “world”
� Read, write, ...

UnixUnix
� r, w, x = 4, 2, 1
� rwxr-x—x = 0751 (octal)
� V7 Unix: 3 16-bit words specified all permission info

� permission bits, user #, group #
» Andrew's /etc/passwd has 32,670 users...

15-410, S’06- 47 -

Summary
FileFile

� Abstraction of disk/tape storage
� Records, not sectors
� Type information

� Naming
� Complexity due to linking

� Ownership, permissions
� Semantics of multiple open() s

Extra details in 20.7, 20.8Extra details in 20.7, 20.8

