[../15/410

File System (Interface)
Mar. 29, 2006

Greg Hartman

Dave Eckhardt
Bruce Maggs
Contributions from Rahul lyer

L26_Filesystem 15-410, S'06 *E

Synchronization

Today

= Chapter 10, File system interface
= Ok to skip: remote/distributed (10.5.2!!)

-2 - 15-410, S'06 QE

Synchronization

Two interesting papers about disks

= http://www.seagate.com/content/docs/pdf/whitepaper/D2c_Mo
re_than_Interface_ ATA vs_ SCSI 042003.pdf

= Google for “200 ways to revive a hard drive”

-3 - 15-410, S'06 “*E

Disks aren’t enough

Users want to:

= Store multiple files on a disk
= Disks have a global list of blocks

= Protect files from unauthorized access
= Disks allow access to any block

= Retrieve these files quickly
= Disks only perform well with certain access patterns

= Reference the files with sensible names and group files
= Have blocks referenced by number

-4 - 15-410, S'06 “*E

Disks do provide blocks

Lots and lots of inexpensive blocks

= The going price is about 61,035,156 / $95.00
= Assumes 4096 bytes/block. Taxes, shipping, and handling extra

Filesystems steal some of the blocks
= We call this “storing metadata”

= Consumes about 7% of the blocks

to give us what we really want from disks

-5- 15-410, S'06

Types of filesystem metadata

Mapping between files and blocks

Allows multiple files on a disk

Access control lists
Protects files from unauthorized access

Freespace lists
Allows files to grow and shrink, and be recycled

Directories
Provide naming and grouping of files

-6 -

15-410, S'06 “*E

Additional metadata

Per file
= |dentifier - “file number” aka inode
Type (or not)
Location — device, block list
Size — real or otherwise
Time, date, last modifier — monitoring, curiosity

Per filesystem
= Quotas: space available/consumed per user

15-410, S'06 “*E

“Extended” file attributes

BSD Unix

= archived

= nodump

= append-only (by user/by operating system)
= immutable (by user/by operating system)

MacOS
= Application that created the file (Creator)

Plan 9

= |dentity of most recent mutator

15-410, S'06 “*E

Metadata

Use of metadata takes time

String lookups take a long time

Most operations in the interface read or write metadata

Solution: memoization
= Do the hard work once
= Save the answer in a table
= Refer to the answer with a convenient handle when needed

= Provide a way to free the answer when done

-10 - 15-410, S'06 {(E

Memos applied to filesystems

Expensive string lookups happenin open()
= Saves a lot of stuff in the file descriptor table:
= File-system / partition
= File-system-relative file number
= Read vs. write

= Cursor position
= In memory copies of frequently accessed metadata

Open returns the index for the file in the table

close() releases the data from the table

11 -

15-410, S'06

Problem: maintaining consistency

Consider three unrelated processes:
= Process A opens F read-only
= Processes B and C open F read-write

The filesystem should enforce:
= Acan'twrite to F
= A can see updates made by B
= Simultaneous changes to the file should not corrupt state

Solution: split memos into shared and semi-shared parts

-12 - 15-410, S'06 {(E

Shared state (Unix Model)

Mirror of on-disk structure
= File number, size, permissions, modification time, ...

Housekeeping info
= Back pointer to enclosing file system
= Pointer to disk device hosting the file
= Who holds locks on ranges of file

How to access file (vector of methods)

-13 - 15-410, S'06 {(E

Semi-shared state (Unix Model)

Shared by related processes
= “copied” by fork() and inherited across exec()

Access mode (read vs. write, auto-append, ...)
Credentials of process (when it opened the file)
Cursor position

Pointer to the shared state

-14 - 15-410, S'06 {(E

Example

int fd1,fd2,child;
off_t posl, pos2;
char buf[10];

fd1 = open(“foo.c”, O_RDONLY, 0);
fd2 = open(“foo.c”, O_RDONLY, 0);
if ((child=fork())) {
read(fdl, &buf, sizeof (buf));
exit(0);
} else {
waitpid(child, NULL, 0);
posl = Iseek(fdl, OL, SEEK_CUR);/*10*/
pos2 = Iseek(fd2, OL, SEEK_CUR);/*0*/

- 15 -

15-410, S'06 “*E

- 16 -

Parent

Tty #5

Semi-shared State

References: 2

Shared State

15-410, S'06 QE

Tty #5
References: 2

Parent

e \/node #334
References 1

fdl = open(“foo.c”, O_RDONLY, 0);

217 - 15-410, S'06 .QE

Tty #5

Parent

References: 2

fd2 = open(“foo.c”, O_RDONLY, 0);
fork(); waitpid(child, NULL, 0);

- 18 -

e \/node #334
References 2

15-410, S'06 QE

References: 2

Vnode #334
References 2

read(fdl, &buf, sizeof (buf));
exit(0);

- 19 - 15-410, S'06 QE

Tty #5

Parent

References: 2

posl = Iseek(fdl, OL, SEEK_CUR);/*10*/
pos2 = Iseek(fd2, OL, SEEK_CUR);/*0*/

=20 -

e \/node #334
References 2

15-410, S'06 QE

File types (or not)

Goal
= Avoid printing a binary executable file
= Find program which “understands” a file selected by user

Derive “type” from file names
= * exe are executable, *.c are C

Store type in metadata
= MacOS: 4-byte type, 4-byte creator

Unix: file name/neither — Leave it (mostly) up to users

-21- 15-410, S'06 {(E

File Structure

What's in a file?
= Stream of bytes?

= Text?
= What character set? US-ASCII? Roman-1? Unicode?

= Records?

Record structure?
= Fixed-length? Varying? Bounded?

- 22 - 15-410, S'06 “*E

File Structure - Unix

Program loader needs to know about executables

= “Magic numbers” in first two bytes
= obsolete A.OUT types - OMAGIC, NMAGIC, ZMAGIC
= ELF
= #l - script

Otherwise, array of bytes
= User/application remembers meaning (hopefully!)

Advantage: easy to create new file formats

Disadvantage: identifying files becomes difficult
= Try the “file” command

= Read /usr/share/magic
= Marvel at the dedication of the masses

- 23 -

15-410, S'06 “*E

File Structure — MacOS

Data fork

= Array of bytes
= Application-dependent structure

Resource fork

= Table of resources
= |Indexed by type and sequence number
= For example, Icon #3, Menu #2, Window #3, Dialog box #4

= Many types are widely used & understood
= Finder displays icons from resource fork

A good compromise between flexibility and structure
- 24 -

15-410, S'06 “*E

Access Methods

Provided by OS or optional program library

Sequential
= Like a tape
= read() next, write() next, rewind()
= Sometimes: skip forward/backward

Direct/relative
= Array of fixed-size records
= Read/write any record, by #

_ 925 -

15-410, S'06 “*E

Access Methods — Indexed

File contains records
Records contain keys

Index maps keys records

= Sort data portion by key
= Binary search in multi-level list

Fancy extensions
= Multiple keys, multiple indices

= Are we having a database yet?
= Missing: relations, triggers, consistency, transactions, ...

= Unix equivalent: dom/ndbm/gdbm/bdb/...

- 26 -

15-410, S'06 “*E

Filesystem Interface (Unix model)

Create — locate space, enter into directory

Write, Read — according to position pointer/cursor
Seek — adjust position pointer

Delete — remove from directory, release space

Truncate
= Trim data from end
= Often all of it

Append, Rename

- 27 - 15-410, S'06 “*E

Directory Operations

Lookup(inode, “index.html")

Iterate over directory contents
Create(“index.html”)
Delete(“index.html”)
Rename(“index.html”, “index.html~")

Scan file system
= Unix find command
= Backup program

- 28 -

15-410, S'06 “*E

Directory Types

Single-level
= Flat global namespace — only one test.c
= Ok for floppy disks (maybe)

Two-level
= Every user has a directory

= One test.c per user
= [1003,221]PROFILE.CMD vs. [1207,438]PROFILE.CMD

= Typical of early timesharing

Are we having fun yet?

- 29 - 15-410, S'06 {(E

Tree Directories

Absolute Pathname
= Sequence of directory names
= Starting from “root”
= Ending with a file name

- 30 -

15-410, S'06 “*E

Tree Directories

gsh

-31- 15-410, S'06 {(E

Tree Directories

Directories are special files
= Created with special system calls — mkdir()
= Format understood, maintained by OS

Current directory (“.")
= “Where | am now”

= Start of relative pathname
= /stuff/foo.c aka stuff/foo.c
= ../joe/foo.c aka /usr/joe/foo.c

= Directory reference cached in user library or kernel
= e.g., p->p_fd->fd_cdir

- 32 - 15-410, S'06 {(E

DAG Directories

Share files and directories between users
Not mine, not yours: ours

Destroy when everybody deletes

Files with no links exist until closed

Difficult for users to predict behavior
= Unlink and create breaks the link
= Open and truncate preserves it
= Both are reasonable choices

Unix “hard link”

= Files, not directories
= (“.. problem”)

- 33 - 15-410, S'06 QE

The “.. Problem”

- 34 -

$In .. bar

15-410, S'06 @

Soft links

Hard links “too hard”?

= Need a level of indirection in file system?
= No “one true name” for a file

Alternative: soft link / symbolic link / “short cut”
= Tiny file, special type
= Contains name of another file
= OS dereferences link when you open() it

- 35 - 15-410, S'06 {(E

Hard vs. Soft Links

Hard links

= Enable reference-counted sharing
= No name is “better” than another

Soft links

= Can soft-link a directory
= one “true” parent, so no “.. problem”

= Work across file system & machine boundaries
= Easier to explain
= “Dangling link” problem

= Owner of “one true file” can delete it

= Soft links now point to nothing

- 30 -

15-410, S'06 “*E

Graph Directories

Depth-first traversal can be slow!

May need real garbage collection
Do we really need this?

!
....Ill

- 37 - 15-410, S'06 {(E

Mounting

Multiple disks on machine
Multiple partitions on disk

Single file system within a partition
= Or, within a volume / logical volume / ...

How to name files in “another” file system?

= Wrong way
= C:\temp vs. D:\temp
= [1003,221]PROFILE.CMD vs. [1207,438]PROFILE.CMD

- 38 - 15-410, S'06 {(E

Mounting

-39 - 15-410, S'06 {(E

Mounting

- 40 - 15-410, S'06 {(E

Mounting

ece. cS.
cmu.edu cmu.edu gsh

-41 - 15-410, S'06 {(E

Mounting

ece. cS.
cmu.edu cmu.edu gsh

-42 - 15-410, S'06 {(E

Multiple Users

Users want to share files

What's a user?
= Strings can be cumbersome
= Integers are nicer for OS to compare
= Unix: User ID / “uid”
= Windows: Security ID / “SID”

What's a group?
= A set of users
= Typically has its own gid / SID

_43 -

15-410, S'06 “*E

Protection

Override “bit” (e.g., MS-DOS)

= Bit says “don't delete this file”

= Unless | clear the bit

Per-file passwords
= Annoying in a hurry

Per-directory passwords
= Still annoying

- 44 -

15-410, S'06 “*E

Protection

Access modes
= Read, Write, Execute, Append, Delete, List, Lock, ...

Access Control List (ACL)

= File stores list of (user, modes) tuples
= Cumbersome to store, view, manage

Capability system
= User is given a list of (file, access keys) tuples
= Revocation problem

- 45 - 15-410, S'06 {(E

Protection — typical

File specifies owner, group

= Permissions for owner, permissions for group members
= Read, write, ...

= Permissions for “other” / “world”
= Read, write, ...

Unix
= rw,Xx=42,1
= rwxr-x—x = 0751 (octal)
= V7 Unix: 3 16-bit words specified all permission info

= permission bits, user #, group #
» Andrew's /etc/passwd has 32,670 users...

- 46 - 15-410, S'06 {(E

Summary

File

Abstraction of disk/tape storage
= Records, not sectors
= Type information

Naming
= Complexity due to linking

Ownership, permissions
Semantics of multiple open() s

Extra details in 20.7, 20.8

-47 - 15-410, S'06 “*E

