
15-410, S’06- 1 -

Executables
March 3, 2006

Some slides taken from 15-213 S'03 (Goldstein, Maggs).Some slides taken from 15-213 S'03 (Goldstein, Maggs).

Original slides authored by Randy Bryant and Dave O'Hallaron.Original slides authored by Randy Bryant and Dave O'Hallaron.

15-410
“Nobody reads these quotes anyway…”

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

15-410, S’06- 2 -

Pop Quiz

Q1. What does the Unix “ld” program do?What does the Unix “ld” program do?

Q2. What does “ld” stand for?Q2. What does “ld” stand for?

15-410, S’06- 3 -

Synchronization

Wednesday: Project 3 Checkpoint 1Wednesday: Project 3 Checkpoint 1
� In cluster
� We will ask you to load and run a program released then

You need to You need to planplan how to get there how to get there
� Simple program loader
� Dummy VM (please write bad code!!)
� Getting from kernel mode to user mode
� Getting from user mode to kernel mode
� Lots of faults

� Solving them will require “story telling”
» Don't forget about intel-isr.pdf and intel-sys.pdf

15-410, S’06- 4 -

Outline

Where addresses come fromWhere addresses come from

Executable files vs. Memory ImagesExecutable files vs. Memory Images
� Conversion by “program loader”
� You will write one for exec() in Project 3

Object file linking (answer to Q2)Object file linking (answer to Q2)
� Loader bugs make programs execute half -right
� You will need to characterize what's broken

� (Not : “every time I call printf() I get a triple fault”)
� You will need to how the parts should fit together

15-410, S’06- 5 -

Who emits addresses?
Program linking, program loadingProgram linking, program loading

� ... means getting bits in memory at the right addresses

Who Who usesuses those addresses? those addresses?
� (Where did that “wild access” come from?)

Code addresses: program counter (%cs:%eip)Code addresses: program counter (%cs:%eip)
� Straight-line code
� Loops, conditionals
� Procedure calls

Stack area: stack pointer (%ss:%esp, %ss:%ebp)Stack area: stack pointer (%ss:%esp, %ss:%ebp)

Data regions (data/bss/heap)Data regions (data/bss/heap)
� Most pointers in general purpose registers (%ds:%ebx)

15-410, S’06- 6 -

Initialized how?
Program counterProgram counter

� Set to “entry point” by OS program loader

Stack pointerStack pointer
� Set to “top of stack” by OS program loader

RegistersRegisters
� How does my code know the address of thread_table[] ?
� Some pointers are stored in the instruction stream

for (tp = thread_table,
 tp < &thread_table[n_threads], ++tp)

� Some pointers are stored in the data segment
 struct thread *thr_base = &thread_table[0];

� How do these all point to the right places?

15-410, S’06- 7 -

Where does an int live?
int k = 3;
int foo(void) {
 return (k);
}

int a = 0;
int b = 12;
int bar (void) {
 return (a + b);
} ...

ret
leave
movl _k,%eaxcode 0

b = 12
k = 3data 4096

a = 0bss 8192

15-410, S’06- 8 -

Loader: Image File ⇒ Memory Image

...
ret
leave
movl _k,%eaxcode 0

12
 3data 4096

0bss 8192

...
ret
leave
movl _k,%eaxcode 0

12
 3data 4096

header

Image file has header (tells loader what to do)
Memory image has bss segment!

15-410, S’06- 9 -

Programs are Multi-part
ModularityModularity

� Program can be written as a collection of smaller source files,
rather than one monolithic mass.

� Can build libraries of common functions (more on this later)
� e.g., Math library, standard C library

Efficiency (time)Efficiency (time)
� Change one source file, compile, and then relink.
� No need to recompile other source files.

“Link editor” combines objects into one image file“Link editor” combines objects into one image file
� Unix “link editor” called “ld”

15-410, S’06- 10 -

Linker Todo List
Merge object filesMerge object files

� Merges multiple relocatable (. o) object files into a single executable
object file that can loaded and executed by the loader.

Resolve external referencesResolve external references
� As part of the merging process, resolves external references.

� External reference : reference to a symbol defined in another object file.

Relocate symbolsRelocate symbols
� Relocates symbols from their relative locations in the .o files to

new absolute positions in the executable.
� Updates all references to these symbols to reflect their new

positions.
� What does this mean??

15-410, S’06- 11 -

Every .o uses same address space

code

data

bss

code

data

bss

15-410, S’06- 12 -

Combining .o's Changes Addresses

code

data

bss

code

data

bss

15-410, S’06- 13 -

Linker uses relocation information
FieldField

� address, bit field size

Field typeField type
� relative, absolute

Field referenceField reference
� symbol name

ExampleExample
� “Bytes 1024..1027 of foo.o refer to absolute address of _main”

15-410, S’06- 14 -

Example C Program

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c a.c

extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

15-410, S’06- 15 -

Merging Relocatable Object
Files into an Executable Object
File

main()
m.o

int *ep = &e

a()

a.o

int e = 7

headers

main()

a()

0system code

int *ep = &e

int e = 7

system data

more system code

int x = 15
int y

system data

int x = 15

Relocatable Object Files Executable Object File

.text

.text

.data

.text

.data

.text

.data

.bss .symtab
.debug

.data

uninitialized data .bss

system code

15-410, S’06- 16 -

Relocating Symbols and Resolving
External References

� Symbols are lexical entities that name functions and variables.
� Each symbol has a value (typically a memory address).
� Code consists of symbol definitions and references .
� References can be either local or external .

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c a.c

extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Def of local
symbol e

Ref to external
symbol exit
(defined in
libc.so)

Ref to
external
symbol e

Def of
local
symbol
ep

Defs of
local
symbols
x and y

Refs of local
symbols ep,x,y

Def of
local
symbol a

Ref to external
symbol a

15-410, S’06- 17 -

Executable File / Image File
Linked program consists of multiple “sections”Linked program consists of multiple “sections”

� Section properties
� Type
� Memory address

Common Executable File FormatsCommon Executable File Formats
� a.out - “assembler output” (primeval Unix format: 70's, 80's)
� Mach-O – Mach Object (used by MacOS X)
� ELF – Executable and Linking Format

� (includes “DWARF” - Debugging With Attribute Record Format)

15-410, S’06- 18 -

Executable and Linkable Format
(ELF)

Standard binary format for object filesStandard binary format for object files

Derives from AT&T System V UnixDerives from AT&T System V Unix
� Later adopted by BSD Unix variants and Linux

One unified format for One unified format for
� Relocatable object files (.o)
� Executable object files
� Shared object files (. so)

Generic name: ELF binariesGeneric name: ELF binaries

Better support for shared libraries than old Better support for shared libraries than old a.outa.out formats. formats.

15-410, S’06- 19 -

ELF Object File Format
Elf headerElf header

� Magic number, type (.o, exec, .so),
machine, byte ordering, etc.

Program header tableProgram header table
� Page size, virtual addresses memory

segments (sections), segment sizes.

.text.text section section
� Code

.rodata, .data.rodata, .data section section
� Initialized (static) data (ro = “read-only”)

.bss.bss section section
� Uninitialized (static) data
� “Block Started by Symbol”
� “Better Save Space”
� Has section header but occupies no space

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.txt

.rel.data

.debug

Section header table
(required for relocatables)

0

.rodata section

15-410, S’06- 20 -

ELF Object File Format (cont)
.symtab.symtab section section

� Symbol table
� Procedure and static variable names
� Section names and locations

.rel.text.rel.text section section
� Relocation info for .text section
� Addresses of instructions that will need to

be modified in the executable
� Instructions for modifying.

.rel.data.rel.data section section
� Relocation info for .data section
� Addresses of pointer data that will need to

be modified in the merged executable

.debug.debug section section
� Info for symbolic debugging (gcc -g)

0
ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.txt

.rel.data

.debug

Section header table
(required for relocatables)

.rodata section

15-410, S’06- 21 -

“Not needed on voyage”
Some sections not needed for executionSome sections not needed for execution

� Symbol table
� Relocation information
� Symbolic debugging information

These sections not loaded into memoryThese sections not loaded into memory

May be removed with “strip” commandMay be removed with “strip” command
� Or retained for future debugging

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

.rodata section

15-410, S’06- 22 -

Loading ELF Binaries

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

.text segment
(r/o)

.data segment
(initialized r/w)

.bss segment
(uninitialized r/w)

Executable object file for
example program p

Process image

0x08048494

init and shared lib
segments

0x080483e0

Virtual addr

0x0804a010

0x0804a3b0

.rodata section

.rodata segment
(r/o)

0x0804900

15-410, S’06- 23 -

Getting Help
Writing your first loader should be funWriting your first loader should be fun

� But some parts might be “fun” instead

A tool you can useA tool you can use
� gdb

% gdb init
(gdb) x/i main
0x1000020 <main>: push %ebp
(gdb) x/x main
0x1000020 <main>: 0x83e58955

� Ok, now you have a cross-check!

Other tools which tell you where executable parts belongOther tools which tell you where executable parts belong
� nm
� objdump

15-410, S’06- 24 -

Summary
Where do addresses come from?Where do addresses come from?

Where does an int live?Where does an int live?

Image file vs. Memory imageImage file vs. Memory image

LinkerLinker
� What, why
� Relocation

ELF structureELF structure
� The pieces which need to be loaded into memory by

somebody
� Somebody whose name is a lot like yours...

