
What You Need to Know
for Project Three

Dave Eckhardt
Steve Muckle



Carnegie Mellon University 2

Synchronization

Introduction to the Kernel Project

� Project 3 Checkpoint 1

� Monday Mar. 8th class-period demo: 52xx cluster

Upcoming dates

� Homework 1 has been posted, due Wed.

� Mid-term examination Thursday!

� Web form will be posted today (please answer today)

Final Exam list will be posted soon

� You must notify us of conflicts in a timely fashion



Carnegie Mellon University 3

Synchronization

� Reminder: Book report

� Please don't complain end-of-semester due 
date!

� Thinking about the future

� Summer internship with SCS Facilities?

� Fall: 15-412, OS Practicum

� Spring: 15-610, Engineering Complex Large-
Scale Computer Systems



Carnegie Mellon University 4

Overview

Introduction to the Kernel Project
Mundane Details in x86

registers, paging, the life of a memory access, context 
switching, system calls, kernel stacks

Loading Executables
Style Recommendations (or pleas)
Attack Strategy
A Quick Debug Story



Carnegie Mellon University 5

Introduction to the Kernel 
Project

P3:P2 :: P2:P1!
P2

� Stack, registers, stack, race conditions, stack

P3

� Stack, registers, page tables, scheduling, races...

You will “become one with” program execution
P1: living without common assumptions
P3: providing those assumptions to users



Carnegie Mellon University 6

The P3 Experience

� Goals/challenges

� More understanding

� Of OS

� Practice with synthesizing design requirements

� More code

� More planning

� More organization

� More quality!

� Robust

� More debugging!



Carnegie Mellon University 7

Introduction to the Kernel 
Project: Kernel Features

Your kernels will feature:
- preemptive multitasking
- multiple virtual address spaces
- a “small” selection of useful system calls
- robustness (hopefully)



Carnegie Mellon University 8

Introduction to the Kernel Project: 
Preemptive Multitasking 

Preemptive multitasking is 
forcing multiple user 
processes to share the CPU

You will use the timer interrupt 
to do this

Reuse your timer code from P1 
if possible



Carnegie Mellon University 9

Introduction to the Kernel Project: 
Preemptive Multitasking

Simple round-robin scheduling will suffice

� Some system calls will modify the sequence

� Think about them before committing to a design

Context switching is tricky but cool
As in P2, creating a new task/thread is hard

� Especially given memory sharing

As in P2, exit is tricky too

� At least one “How can I do that???” question



Carnegie Mellon University 10

Introduction to the Kernel Project: 
Multiple Virtual Address Spaces

The x86 architecture supports paging
You will use this to provide a virtual address 

space for each user task
Each user task will be isolated from others
Paging will also protect the kernel from users
Segmentation will not be used for protection



Carnegie Mellon University 11

Introduction to the Kernel 
Project: System Calls

You used them in P2
Now you get to implement them
Examples include fork(), exec(), thread_fork
There are easier ones like gettid()

� The core cluster – must work solidly

� fork(), exec()

� exit(), wait()



Carnegie Mellon University 12

Mundane Details in x86

We looked at some of these for P1
Now it is time to get the rest of the story
How do we control processor features?
What does an x86 page table look like?
What route does a memory access take?
How do you switch from one process to 

another?



Carnegie Mellon University 13

Mundane Details in x86: 
Registers

General purpose regs (not interesting)
Segment registers (somewhat interesting)

- %cs, %ss, %ds, %es, %fs, %gs
%eip (a little interesting)
EFLAGS (interesting)
Control Registers (very interesting)

- %cr0, %cr1, %cr2, %cr3, %cr4
- esp0 field in hardware task



Carnegie Mellon University 14

Mundane Details in x86: 
General Purpose Registers

The most boring kind of register
%eax, %ebx, %ecx, %edx, %edi, %esi, %ebp, 

%esp
%eax, %ebp, and %esp are exceptions, they 

are slightly interesting
- %eax is used for return values
- %esp is the stack pointer
- %ebp is the base pointer



Carnegie Mellon University 15

Mundane Details in x86: 
Segment Selector Registers

Slightly more interesting
%cs specifies the segment used to access 

code (also specifies privilege level)
%ss specifies the segment used for stack 

related operations (pushl, popl, etc)
%ds, %es, %fs, %gs specify segments used to 

access regular data
Mind these during context switches!!!



Carnegie Mellon University 16

Mundane Details in x86:
The Instruction Pointer (%eip)

It’s interesting
Cannot be read from or written to directly

� (branch, call, return)

Controls which instructions get executed
‘nuff said.



Carnegie Mellon University 17

Mundane Details in x86: 
The EFLAGS Register

It’s interesting

Flag city, including interrupt-enable, arithmetic flags

� You want “alignment check” off



Carnegie Mellon University 18

Mundane Details in x86: 
Control Registers

Very interesting!
An assortment of important flags and values
%cr0 contains powerful system flags that 

control things like paging, protected mode
%cr1 is reserved (now that’s really interesting)
%cr2 contains the address that caused the last 

page fault



Carnegie Mellon University 19

Mundane Details in x86: 
Control Registers, cont.

%cr3 contains the address of the current page 
directory, as well as a couple paging related 
flags

%cr4 contains… more flags (not as interesting 
though)
- protected mode virtual interrupts?
- virtual-8086 mode extensions?
- No thanks



Carnegie Mellon University 20

Mundane Details in x86: 
Registers

How do you write to a special register?
Most of them: movl instruction
Some (like CRs) you need PL0 to access
We provide inline assembly wrappers

� Maybe we shouldn't!
EFLAGS is a little different, but you will not be 

writing directly to it anyway



Carnegie Mellon University 21

Mundane Details in x86: 
The Life of a Memory Access

Logical Address

Linear Address

Physical Address

Segmentation

Paging

(consists of 16 bit segment selector, 32 bit offset)

(32 bit offset)

(32 bit offset)



Carnegie Mellon University 22

Mundane Details in x86: 
The Life of a Memory Access

Logical Address

Linear Address

Segmentation

(consists of 16 bit segment selector, 32 bit offset)

(32 bit offset)

The 16 bit segment selector comes from a 
segment register (%CS & %SS implied)

The 32 bit offset is added to the base 
address of the segment

That gives us a 32 bit offset into the virtual 
address space



Carnegie Mellon University 23

Mundane Details in x86:
Segmentation

Segments need not be backed by physical 
memory and can overlap

Segments defined for these projects:

Kernel Code Kernel Data User Code User Data

0xFFFFFFFF

0x00000000



Carnegie Mellon University 24

Mundane Details in x86: 
Segmentation

For Project 3 we are abusing segmentation

� All segments “look the same”

� Confusing, but simplifies life for you

� See 15-410 segmentation guide on web 
site



Carnegie Mellon University 25

Mundane Details in x86: 
The Life of a Memory Access

Linear Address

Physical Address

Paging

(32 bit offset)

(32 bit offset)

Top 10 bits index into page directory, point 
us to a page table

The next 10 bits index into page table, 
point us to a page

The last 12 bits are an offset into that page



Carnegie Mellon University 26

Mundane Details in x86:
Page Directories and Tables

%CR3

Page 
Directory

Page 
Table

Page 
Table

Page 
Table

Current Task’s
Page Directory Address



Carnegie Mellon University 27

Mundane Details in x86: 
Page Directory

The page directory is 4k 
in size

Contains 
pointers 
to page tables

Entries may be 
invalid (see 
“P” bit)

Figure from page 87 of intel-sys.pdf
This a jumping-off point!



Carnegie Mellon University 28

Mundane Details in x86: 
Page Table

The page table is also 4k 
in size

Contains 
pointers 
to pages

“P” bit again

Figure from page 87 of intel-sys.pdf
This a jumping-off point!



Carnegie Mellon University 29

Mundane Details in x86: 
The Life of a Memory Access

Whoa there, Slick… What if the page directory
entry isn’t there?

What happens if the page table entry isn’t 
there?

It’s called a page fault, it’s an exception, and it 
lives in IDT entry 13

You will have to write a handler for this 
exception and do something intelligent



Carnegie Mellon University 30

Mundane Details in x86: 
Context Switching

We all know that 
processes take turns 
running on the CPU

This means they have to 
be stopped and started 
over and over

How?



Carnegie Mellon University 31

Mundane Details in x86: 
Context Switching

The x86 provides a hardware “task” abstraction

� This makes context switching easy
But...

� Often faster to manage processes in software

� We can also tailor our process abstraction to our 
particular needs

� Our OS is more portable if it doesn't rely on one 
processor's notion of “task”

Protected mode requires one hardware task

� Already set up by 410 boot code



Carnegie Mellon University 32

Mundane Details in x86: 
Context Switching

Context switching is a very delicate procedure
Great care must be taken so that when the 

thread is restarted, it does not know it ever 
stopped

“User” registers must be exactly the same 
(%cr3 is the key non-user register)

Its stack must be exactly the same
Its page directory must be in place



Carnegie Mellon University 33

Mundane Details in x86: 
Context Switching

Hints on context switching:

� Use the stack, it is a convenient place to 
store things

� If you do all your switching in one routine, 
you have eliminated one thing you have to 
save (%eip)

� New threads will require some special care

� Try to confine this code; don't infect your 
beautiful pure context-switcher



Carnegie Mellon University 34

Mundane Details in x86: 
System Calls

System calls use “software interrupts”

� (which are not actually interrupts)
Install handlers just as you did for the timer, 

keyboard
Calling convention specified in handout

� Matches P2

If you are rusty on the IDT refer back to P1



Carnegie Mellon University 35

Mundane Details in x86: 
Kernel Stacks

User processes have a separate stack for their 
kernel activities

Located in kernel space
How does the stack pointer get switched to the 

kernel stack?

User-Level
Stack

Kernel Stack PCB



Carnegie Mellon University 36

Mundane Details in x86: 
Kernel Stacks

When the CPU switches from user mode to 
kernel mode the stack pointer is changed

The new (kernel) stack pointer to use is stored 
in the configuration of the CPU hardware task

� Remember: there's only one “x86 task”
We provide a function to change this value

set_esp0(void* ptr)
Used during next user⇒kernel transition

� So set_esp0() “does nothing” (until later)



Carnegie Mellon University 37

Loading Executables

Same approach as P2
“RAM disk” file system
But you must write a 

loader



Carnegie Mellon University 38

Loading Executables:
The Loader

RAM-disk bytes are part of the kernel data area
You need to load them into the task’s address 

space
Code, rodata, data, bss, stack – all up to you!

Executables will be in “simple ELF” format
References to resources are in the handout



Carnegie Mellon University 39

Encapsulation!!!!!

You will re-implement chunks of your kernel
It will be painful if code is holographic
Don't “use a linked list of threads”
Do define a process-list interface

� find(), append(), first(), ...

You may need to add a method...

� ...which changes the implementation entirely...

� But most existing interface uses (calls) will be ok



Carnegie Mellon University 40

Machine State Summary

256 MB RAM, keyboard, console, timer
IDT
CPU state

� General-purpose registers

� Segment registers

� EFLAGS, cr0...cr4, esp0
We set up for you

� Hardware task

� GDT (global descriptor table) – 4 segments



Carnegie Mellon University 41

Attack Strategy

There is an attack 
strategy in the handout

It represents where we 
think you should be in 
particular weeks

You WILL have to turn in 
checkpoints

Excellent data indicate...
Missing one checkpoint 
is dangerous...don't 
miss two!



Carnegie Mellon University 42

Attack Strategy

Please read the handout a couple times over 
the next few days

Create doxygen-only files

� scheduler.c, process.c, ...

� Document major functions

� Document key data structures

� A very iterative process

Suggestion: doxygen tentative responsibilities

� For a good time, estimate #lines, #days



Carnegie Mellon University 43

Partnership

Make an explicit partnership plan

� How often you'll meet, for how long

� Regular, fixed meetings are vital!

� Information flow

� When will you read each other's code?

� Meeting agenda suggestions

� Last time's open issues

� New issues

� Who will do what by next meeting?



Carnegie Mellon University 44

Grading Approach

These numbers are not final!

Weight Section
50 Shell loads, runs test programs
10 Concurrency
10 Style/structure
10 Basic tests
15 Non-basic tests

5 Thread tests (not using your P2)



Carnegie Mellon University 45

“Hurdle” Model

We will release a test suite

� ~15 “basic” tests

� ~15 “solidity” tests

� ~2 “stability” tests
Successful completion of Project 3 requires

� ~80% of each section of test suite

� Acceptable preemptibility
You will self-test your P3 when you turn it in



Carnegie Mellon University 46

“Hurdle” Model

Leap the P3 hurdle?

� Work on Project 4

� ~2 weeks after P3

� ~5% of course grade

� A modification/extension of your kernel

� Goal: “interesting”, more than “hard”
Thwarted?

� Extra time for P3 (~1 week)

� 0% will be assigned for P4 grade



Carnegie Mellon University 47

A Quick Debug Story

Ha! You’ll have to have 
been to lecture to hear 
this story. 



Carnegie Mellon University 48

A Quick Debug Story

The moral is, please start 
early. 



Carnegie Mellon University 49

Our Hopes for You

Project 3 can be a transformative experience

	 You may become a different programmer


 Techniques, attitudes

Employers care about this experience
Alumni care about this experience

#include <end_of_412_concern_stories>



Carnegie Mellon University 50

Exhortation

Please read the project handout today!
You need to plan how to get to Checkpoint 1

� Simple loader

� Dummy VM (please write bad code!!)

� Getting from kernel mode to user mode

� Getting from user mode to kernel mode

� Lots of faults

� Solving them will require “story telling”



Carnegie Mellon University 51

Encouragement

This can be done
Stay on track

� Make all checkpoints

� Don't ignore the plan of attack

� Don't postpone merges
Fall 2004

� All groups turned in working kernels

� Let's do it again!



Carnegie Mellon University 52

Good Luck on 
Project 3!


