
15-410, S'06- 1 -

Virtual Memory #2
Feb. 22, 2006

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L16a_VM2

15-410
“...The cow and Zaphod...”

15-410, S'06- 2 -

Last Time

Mapping problem: logical vs. physical addressesMapping problem: logical vs. physical addresses

Contiguous memory mapping (base, limit)Contiguous memory mapping (base, limit)

Swapping – taking turns in memorySwapping – taking turns in memory

PagingPaging

� Array mapping page numbers to frame numbers

� Observation: typical table is sparsely occupied

� Response: some sparse data structure (e.g., 2-level array)

15-410, S'06- 3 -

Swapping

Multiple user processesMultiple user processes

� Sum of memory demands > system memory

� Goal: Allow each process 100% of system memory

Take turnsTake turns

� Temporarily evict process(es) to disk

� “Swap daemon” shuffles process in & out

� Can take seconds per process

� Creates external fragmentation problem

15-410, S'06- 4 -

External Fragmentation (“Holes”)

Process 3

Process 4

Process 1

OS Kernel

Process 2

Process 3

Process 4Process 1

OS Kernel

Process 2

15-410, S'06- 5 -

Benefits of Paging

Process growth problemProcess growth problem

� Any process can use any free frame for any purpose

Fragmentation compaction problemFragmentation compaction problem

� Process doesn't need to be contiguous

Long delay to swap a whole processLong delay to swap a whole process

� Swap part of the process instead!

15-410, S'06- 6 -

Partial Residence

P0 code 0

OS Kernel

[free]
P0 data 0
P1 data 0
P1 stack 0
P0 stack 0
P1 data 1

[free]

P0 code 0
P0 code 1
P0 data 0
P0 stack 0

P1 code 0
P1 data 0
P1 data 1
P1 stack 0

15-410, S'06- 7 -

Page Table Entry (PTE) flags

Protection bits – set by OSProtection bits – set by OS

� Read/write/execute

Valid/Present bit – set by OSValid/Present bit – set by OS

� Frame pointer is valid, no need to fault

Dirty bitDirty bit

� Hardware sets 0⇒1 when data stored into page

� OS sets 1⇒0 when page has been written to disk

Reference bitReference bit

� Hardware sets 0⇒1 on any data access to page

� OS uses for page eviction (below)

15-410, S'06- 8 -

Outline

Partial memory residence (demand paging) in actionPartial memory residence (demand paging) in action

The task of the page fault handlerThe task of the page fault handler

Big speed hacksBig speed hacks

Sharing memory regions & filesSharing memory regions & files

Page replacement policiesPage replacement policies

15-410, S'06- 9 -

Partial Memory Residence

Error-handling code not used by every runError-handling code not used by every run

� No need for it to occupy memory for entire duration...

Tables may be allocated larger than usedTables may be allocated larger than used
player players[MAX_PLAYERS];

Computer can run Computer can run veryvery large programs large programs

� Much larger than physical memory

� As long as “active” footprint fits in RAM

� Swapping can't do this

Programs can launch fasterPrograms can launch faster

� Needn't load whole program before running

15-410, S'06- 10 -

Demand Paging

Use RAM frames as a cache for the set of all pagesUse RAM frames as a cache for the set of all pages

� Some pages are fast to access (in a RAM frame)

� Some pages are slow to access (in a disk “frame”)

Page tables indicate which pages are “resident”Page tables indicate which pages are “resident”

� Non-resident pages have “present=0” in page table entry

� Memory access referring to page generates page fault

� Hardware invokes page-fault exception handler

15-410, S'06- 11 -

Page fault – Reasons, Responses

Address is invalid/illegal – deliver Address is invalid/illegal – deliver software exceptionsoftware exception

� Unix – SIGSEGV

� Mach – deliver message to thread's exception port

� 15-410 – kill thread

Process is growing stack – give it a new frameProcess is growing stack – give it a new frame

“Cache misses” - fetch from disk“Cache misses” - fetch from disk

� Where on disk, exactly?

15-410, S'06- 12 -

Satisfying Page Faults

code

data

bss

stack

Filesystem

Paging Space

Free-frame pool

15-410, S'06- 13 -

Page fault story - 1

Process issues memory referenceProcess issues memory reference

� TLB: miss

� PT: “not present”

TrapTrap to OS kernel! to OS kernel!

� Processor dumps trap frame onto kernel stack (x86)

� Transfers via “page fault” interrupt descriptor table entry

� Runs trap handler

15-410, S'06- 14 -

Page fault story – 2

Classify fault addressClassify fault address

� Illegal address ⇒ deliver an ouch, else...

Code/rodata region of executable?Code/rodata region of executable?

� Determine which sector of executable file

� Launch read() from file into an unused frame

Previously resident r/w data, paged outPreviously resident r/w data, paged out

� “somewhere on the paging partition”

� Queue disk read into an unused frame

First use of bss/stack pageFirst use of bss/stack page

� Allocate a frame full of zeroes, insert into PT

15-410, S'06- 15 -

Page fault story – 3

Put process to sleep (for most cases)Put process to sleep (for most cases)

� Switch to running another

Handle I/O-complete interruptHandle I/O-complete interrupt

� Fill in PTE (present = 1)

� Mark process runnable

Restore registers, switch page tableRestore registers, switch page table

� Faulting instruction re-started transparently

� Single instruction may fault more than once!

15-410, S'06- 16 -

Memory Regions vs. Page Tables

What's a poor page fault handler to do?What's a poor page fault handler to do?

� Kill process?

� Copy page, mark read-write?

� Fetch page from file? Which? Where?

Page table not a good data structurePage table not a good data structure

� Format defined by hardware

� Per-page nature is repetitive

� Not enough bits to encode OS metadata

� Disk sector address can be > 32 bits

15-410, S'06- 17 -

Dual-view Memory Model

LogicalLogical

� Process memory is a list of regions

� “Holes” between regions are illegal addresses

� Per-region methods

� fault(), evict(), unmap()

PhysicalPhysical

� Process memory is a list of pages

� Faults delegated to per-region methods

� Many “ invalid” pages can be made valid

� But sometimes a region fault handler returns “error”
» Handle as with “hole” case above

15-410, S'06- 18 -

Page-fault story (for real)

Examine fault addressExamine fault address

Look up: address Look up: address ⇒⇒ region region

region->fault(addr, access_mode)region->fault(addr, access_mode)

� Quickly fix up problem

� Or start fix, put process to sleep, run scheduler

15-410, S'06- 19 -

Demand Paging Performance

Effective access timeEffective access time of memory word of memory word

� (1 – p
miss

) * Tmemory + p
miss

 * Tdisk

Textbook example (a little dated)Textbook example (a little dated)

� Tmemory 100 ns

� Tdisk 25 ms

� p
miss

 = 1/1,000 slows down by factor of 250

� slowdown of 10% needs p
miss

 < 1/2,500,000!!!

15-410, S'06- 20 -

Speed Hacks

COWCOW

ZFOD (Zaphod?)ZFOD (Zaphod?)

Memory-mapped filesMemory-mapped files

� What msync() is supposed to be used for...

15-410, S'06- 21 -

Copy-on-Write

fork() produces two fork() produces two veryvery-similar processes-similar processes

� Same code, data, stack

Expensive to copy pagesExpensive to copy pages

� Many will never be modified by new process

� Especially in fork(), exec() case

ShareShare physical frames instead of copying? physical frames instead of copying?

� Easy: code pages – read-only

� Dangerous: stack pages!

15-410, S'06- 22 -

Copy-on-Write

SimulatedSimulated copy copy

� Copy page table entries to new process

� Mark PTEs read-only in old & new

� Done! (saving factor: 1024)

� Simulation is excellent as long as process doesn't write...

Making it realMaking it real

� Process writes to page (Oops! We lied...)

� Page fault handler responsible

� Kernel makes a copy of the shared frame

� Page tables adjusted
» ...each process points page to private frame
» ...page marked read-write in both PTEs

15-410, S'06- 23 -

Example Page Table

Virtual Address

stack

code

data

Page table

f029VRW
f237VRX

f981VRW

15-410, S'06- 24 -

Copy-on-Write of Address Space

stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

P0

P9

f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

15-410, S'06- 25 -

Memory Write ⇒ Permission Fault

stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

P0

P9

f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

15-410, S'06- 26 -

Copy Into Blank Frame

stack
stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

P0

P9

f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

15-410, S'06- 27 -

Adjust PTE frame pointer, access

stack
stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRW

P0

P9

f029VRWWWWWWWWW
f237VRX

f982VRW

15-410, S'06- 28 -

Zero Pages

Very special case of copy-on-writeVery special case of copy-on-write

� ZFOD = “Zero-fill on demand”

Many process pages are “blank”Many process pages are “blank”

� All of bss

� New heap pages

� New stack pages

Have one Have one system-widesystem-wide all-zero page all-zero page

� Everybody points to it

� Logically read-write, physically read-only

� Reads are free

� Writes cause page faults & cloning

15-410, S'06- 29 -

Memory-Mapped Files

Alternative interface to read(),write()Alternative interface to read(),write()

� mmap(addr, len, prot, flags, fd, offset)

� new memory region presents file contents

� write-back policy typically unspecified

� unless you msync()...

BenefitsBenefits

� Avoid serializing pointer-based data structures

� Reads and writes may be much cheaper

� Look, Ma, no syscalls!

15-410, S'06- 30 -

Memory-Mapped Files

ImplementationImplementation

� Memory region remembers mmap() parameters

� Page faults trigger read() calls

� Pages stored back via write() to file

Shared memoryShared memory

� Two processes mmap() “ the same way”

� Point to same memory region

15-410, S'06- 31 -

Summary

Process address spaceProcess address space

� Logical: list of regions

� Hardware: list of pages

Fault handler is Fault handler is complicatedcomplicated

� Page-in, copy-on-write, zero-fill, ...

Understand definition & use ofUnderstand definition & use of

� Dirty bit

� Reference bit

