15-410
“..The cow and Zaphod...”

Virtual Memory

Feb. 22, 2006

Dave Eckhardt
Bruce Maggs

Ll6a_VM2

2

15-410, S'06




Last Time

Mapping problem: logical vs. physical addresses
Contiguous memory mapping (base, limit)
Swapping - taking turns in memory

Paging
= Array mapping page numbers to frame numbers
= Observation: typical table is sparsely occupied
= Response: some sparse data structure (e.g., 2-level array)

0. 15-410, S'06



Swapping

Multiple user processes
= Sum of memory demands > system memory
= Goal: Allow each process 100% of system memory

Take turns
= Temporarily evict process(es) to disk
= “Swap daemon” shuffles process in & out
= Can take seconds per process
= Creates external fragmentation problem

_3. 15-410, S'06



External Fragmentation (“Holes”™)

15-410, S'06



Benefits of Paging

Process growth problem
= Any process can use any free frame for any purpose

Fragmentation compaction problem
= Process doesn't need to be contiguous

Long delay to swap a whole process
= Swap part of the process instead!

_5. 15-410, S'06



Partial Residence

15-410, S'06



Page Table Entry (PTE) flags

Protection bits - set by OS
= Read/write/execute

Valid/Present bit — set by OS

= Frame pointer is valid, no need to fault
Dirty bit
= Hardware sets 0—1 when data stored into page
= OS sets 1=0 when page has been written to disk

Reference bit
= Hardware sets 0—=1 on any data access to page

= OS uses for page eviction (below)

15-410, S'06



Outline

Partial memory residence (demand paging) in action
The task of the page fault handler

Big speed hacks

Sharing memory regions & files

Page replacement policies

15-410, S'06



Partial Memory Residence

Error-handling code not used by every run

= No need for it to occupy memory for entire duration...

Tables may be allocated larger than used
player players |[MAX_PLAYERS];

Computer can run very large programs
= Much larger than physical memory
= As long as “active” footprint fits in RAM
= Swapping can't do this

Programs can launch faster
= Needn't load whole program before running

_0.

15-410, S'06



Demand Paging

Use RAM frames as a cache for the set of all pages
= Some pages are fast to access (in a RAM frame)
= Some pages are slow to access (in a disk “frame”)

Page tables indicate which pages are “resident”
= Non-resident pages have “present=0" in page table entry

= Memory access referring to page generates page fault
= Hardware invokes page-fault exception handler

- 10 - 15-410, S'06



Page fault — Reasons, Responses

Address is invalid/illegal — deliver software exception
= Unix — SIGSEGV
= Mach - deliver message to thread's exception port
= 15-410 - Kill thread

Process is growing stack — give it a new frame

“Cache misses” - fetch from disk
= Where on disk, exactly?

“11 - 15-410, S'06



Satisfying Page Faults

stack
III Free-frame pool

data

-—E-

- 12 - 15-410, S'06

code



Page fault story - 1

Process issues memory reference
= TLB: miss
= PT: “not present”

Trap to OS kernel!
= Processor dumps trap frame onto kernel stack (x86)
= Transfers via “page fault” interrupt descriptor table entry
= Runs trap handler

-13 - 15-410, S'06



Page fault story — 2

Classify fault address
= lllegal address = deliver an ouch, else...

Code/rodata region of executable?
= Determine which sector of executable file
= Launch read() from file into an unused frame

Previously resident r/w data, paged out
= “somewhere on the paging partition”
= Queue disk read into an unused frame

First use of bss/stack page
= Allocate a frame full of zeroes, insert into PT

_14 -

15-410, S'06



Page fault story — 3

Put process to sleep (for most cases)
= Switch to running another

Handle I/O-complete interrupt
= Fill in PTE (present = 1)
= Mark process runnable

Restore registers, switch page table
= Faulting instruction re-started transparently
= Single instruction may fault more than once!

_15-

15-410, S'06



Memory Regions vs. Page Tables

What's a poor page fault handler to do?
= Kill process?
= Copy page, mark read-write?
= Fetch page from file? Which? Where?

Page table not a good data structure
= Format defined by hardware
= Per-page nature is repetitive

= Not enough bits to encode OS metadata
= Disk sector address can be > 32 bits

- 16 - 15-410, S'06



Dual-view Memory Model

Logical
= Process memotry is a list of regions
= “Holes” between regions are illegal addresses

= Per-region methods
= fault(), evict(), unmap()

Physical
= Process memotry is a list of pages
= Faults delegated to per-region methods

= Many “invalid” pages can be made valid
= But sometimes a region fault handler returns “error”
» Handle as with “hole” case above

-17 - 15-410, S'06



Page-fault story (for real)

Examine fault address
Look up: address = region

region—->fault (addr, access_mode)

= Quickly fix up problem
= Or start fix, put process to sleep, run scheduler

- 18 - 15-410, S'06



Demand Paging Performance

Effective access time of memory word

- (1 _pmiss) Tmemory"‘ pmiss Taisk

Textbook example (a little dated)
o Tmemory 100 ns

n TdiSk 25 mS
= p_. =1/1,000 slows down by factor of 250
= slowdown of 10% needs P < 1/2,500,000!!!

- 19 - 15-410, S'06



Speed Hacks

cow
ZFOD (Zaphod?)

Memory-mapped files
= What msync() is supposed to be used for...

-20 -

15-410, S'06



Copy-on-Write

fork() produces two very-similar processes
= Same code, data, stack

Expensive to copy pages

= Many will never be modified by new process
= Especially in fork(), exec() case

Share physical frames instead of copying?
= Easy: code pages — read-only
= Dangerous: stack pages!

-21 -

15-410, S'06



Copy-on-Write

Simulated copy
= Copy page table entries to new process
= Mark PTEs read-only in old & new

= Done! (saving factor: 1024)
= Simulation is excellent as long as process doesn't write...

Making it real
= Process writes to page (Oops! We lied...)

= Page fault handler responsible
= Kernel makes a copy of the shared frame
= Page tables adjusted
» ...each process points page to private frame

» ...page marked read-write in both PTEs
_92) . 15-410, S'06



Example Page Table

Page table

_23 .

15-410, S'06



Copy-on-Write of Address Space

_24 - 15-410, S'06



Memory Write = Permission Fault

W

— Na

- 25 - 15-410, S'06




Copy Into Blank Frame

W

— Na

_ 96 -

15-410, S'06



Adjust PTE frame pointer, access

- 27 - 15-410, S'06




Zero Pages

Very special case of copy-on-write
= ZFOD = “Zero-fill on demand”

Many process pages are “blank”
= All of bss
= New heap pages
= New stack pages

Have one system-wide all-zero page
= Everybody points to it
= Logically read-write, physically read-only
= Reads are free

= Writes cause page faults & cloning
28 -

15-410, S'06



Memory-Mapped Files

Alternative interface to read(),write()
= mmap(addr, len, prot, flags, fd, offset)
= hew memory region presents file contents
= write-back policy typically unspecified
= unless you msync()...

Benefits
= Avoid serializing pointer-based data structures

= Reads and writes may be much cheaper
= Look, Ma, no syscalls!

_29 .

15-410, S'06



Memory-Mapped Files

Implementation
= Memory region remembers mmap() parameters
= Page faults trigger read() calls
= Pages stored back via write() to file

Shared memory
= Two processes mmap() “the same way”
= Point to same memory region

-30 -

15-410, S'06



Summary

Process address space
= Logical: list of regions
= Hardware: list of pages

Fault handler is complicated

= Page-in, copy-on-write, zero-fill, ...

Understand definition & use of
= Dirty bit
= Reference bit

_31 -

15-410, S'06



