15-410

"...We are Computer Scientists!..."

Virtual Memory #1 Feb. 17, 2006

Dave Eckhardt
Bruce Maggs

- 1 - L15_VM1 15-410, S'06

Synchronization

Mid-term Thursday, March 2 (evening)

- Please let me know about conflicts
 - (please fill in the web form promptly when you get the mail!)

Homework 1

- Out soon
- Goal: study aid for mid-term exam
 - (We'll release solutions @ deadline for exam study)

- 2 - 15-410, S'06

Outline

Text

Chapters 8, 9

The Problem: logical vs. physical

Contiguous memory mapping

Fragmentation

Paging

- Type theory
- A sparse map

- 3 -

Logical vs. Physical

It's all about address spaces

- Generally a complex issue
 - IPv4 ⇒ IPv6 is mainly about address space exhaustion

Review

- Combining .o's changes addresses
- But what about two programs?

- **4** - 15-410, S'06

Every .o uses same address space

- 5 -

Linker Combines .o's, Changes Addresses

- 6 -

What about *two* programs?

- 7 -

Logical vs. Physical Addresses

Logical address

- Each program has its own address space
 - fetch: address ⇒ data
 - store: address, data ⇒ .
- As envisioned by programmer, compiler, linker

Physical address

- Where your program ends up in memory
- They can't all be loaded at 0x10000!

- 8 -

Reconciling Logical, Physical

Could run programs at addresses other than linked

- Requires using linker to "relocate one last time" at start
- Done by some old mainframe OSs
- Slow, complex, or both

Programs could take turns in memory

- Requires swapping programs out to disk
- Very slow

We are computer scientists!

- Insert a level of indirection
- Well, get the ECE folks to do it for us

- 9 -

Type Theory

Physical memory behavior

- fetch: address ⇒ data
- store: address, data ⇒ .

Process thinks of memory as...

- fetch: address ⇒ data
- store: address, data ⇒ .

Goal: each process has "its own memory"

- process-id ⇒ fetch: (address ⇒ data)
- process-id \Rightarrow store: (address, data \Rightarrow .)

What *really* happens

process-id ⇒ (virtual-address ⇒ physical-address)

- 10 -

Simple Mapping Functions

- 11 - 15-410, S'06

Contiguous Memory Mapping

Processor contains two control registers

- Memory base
- Memory limit

Each memory access checks

```
If V < limit
  P = base + V;
Else
  ERROR /* what do we call this error? */</pre>
```

Context switch

- Save/load user-visible registers
- Also load process's base, limit registers

Problems with Contiguous Allocation

How do we grow a process?

- Must increase "limit" value
- Cannot expand into another process's memory!
- Must move entire address spaces around
 - Very expensive

Fragmentation

New processes may not fit into unused memory "holes"

Partial memory residence

• Must entire program be in memory at same time?

- 13 -

Can We Run Process 4?

Process exit creates "holes"

New processes may be too large

May require moving entire address spaces

Process 3

Process 1

OS Kernel

Process 4

- 14 -

Term: External Fragmentation

Free memory is small chunks

Doesn't fit large objects

Can "disable" lots of memory

Can fix

Costly "compaction"

aka "Stop & copy"

Process 4

Process 2

OS Kernel

- 15 - 15-410, S'06

Term: Internal Fragmentation

Allocators often round up

8K boundary (some power of 2!)

Some memory is wasted inside each segment

Can't fix via compaction

Effects often non-fatal

- 16 -

Swapping

Multiple user processes

- Sum of memory demands > system memory
- Goal: Allow each process 100% of system memory

Take turns

- Temporarily evict process(es) to disk
 - Not runnable
 - Blocked on implicit I/O request (e.g., "swapread")
- "Swap daemon" shuffles process in & out
- Can take seconds per process
 - Modern analogue: laptop suspend-to-disk

- 17 -

Contiguous Allocation ⇒ **Paging**

Solve multiple problems

- Process growth problem
- Fragmentation compaction problem
- Long delay to swap a whole process

Divide memory more finely

- Page = small region of virtual memory (½K, 4K, 8K, ...)
- Frame = small region of physical memory
- [I will get this wrong, feel free to correct me]

Key idea!!!

Any page can map to (occupy) any frame

- 18 -

Per-process Page Mapping

- 19 -

Problems Solved by Paging

Process growth problem

Any process can use any free frame for any purpose

Fragmentation compaction problem

Process doesn't need to be contiguous, so don't compact

Long delay to swap a whole process

Swap part of the process instead!

- 20 -

Partial Residence

- 21 - 15-410, S'06

Data Structure Evolution

Contiguous allocation

Each process was described by (base,limit)

Paging

- Each page described by (base, limit)?
 - Pages typically one size for whole system
- Ok, each page described by (base address)
- Arbitrary page ⇒ frame mapping requires some work
 - Abstract data structure: "map"
 - Implemented as...
 - » Linked list?
 - » Array?
 - » Hash table?
 - » Skip list?
 - » Splay tree?????

- 22 - 15-410, S'06

Page Table Options

Linked list

O(n), so V⇒P time gets longer for large addresses!

Array

- Constant time access
- Requires (large) contiguous memory for table

Hash table

- Vaguely-constant-time access
- Not really bounded though

Splay tree

- Excellent amortized expected time
- Lots of memory reads & writes possible for one mapping
- Probably impractical

- 23 - 15-410, S'06

Page Table Array

- 24 -

- 25 -

- 26 -

- 27 -

- 28 -

User view

Memory is a linear array

OS view

Each process requires N frames

Fragmentation?

- Zero external fragmentation
- Internal fragmentation: average ½ page per region

- 29 - 15-410, S'06

Bookkeeping

One page table for each process

One global frame table

- Manages free frames
- Remembers who owns a frame

Context switch

Must "activate" switched-to process's page table

- 30 -

Hardware Techniques

Small number of pages?

"Page table" can be a few registers

Typical case

- Large page tables, live in memory
 - Where?
 - » Processor has "Page Table Base Register" (names vary)
 - » Set during context switch

- 31 -

Double trouble?

Program requests memory access

Processor makes two memory accesses!

- Split address into page number, intra-page offset
- Add to page table base register
- Fetch page table entry (PTE) from memory
- Add frame address, intra-page offset
- Fetch data from memory

Solution: "TLB"

Not covered today

- 32 -

Page Table Entry Mechanics

PTE conceptual job

Specify a frame number

PTE flags

- Specified by OS for each page/frame
- Protection
 - Read/Write/Execute bits
- Valid bit
 - Not-set means access should generate an exception
- Dirty bit
 - Set means page was written to "recently"
 - Used when paging to disk (later lecture)

- 33 -

Page Table Structure

Problem

- Assume 4 KByte pages, 4-Byte PTEs
- Ratio: 1024:1
 - 4 GByte virtual address (32 bits) ⇒ 4 MByte page table
 - For each process!

One Approach: Page Table Length Register (PTLR)

- (names vary)
- Programs don't use entire virtual space
- Restrict a process to use entries 0...N
- On-chip register detects out-of-bounds reference
- Allows small PTs for small processes
 - (as long as stack isn't far from data)

Page Table Structure

Key observation

- Each process page table is a sparse mapping
- Many pages are not backed by frames
 - Address space is sparsely used
 - » Enormous "hole" between bottom of stack, top of heap
 - » Often occupies 99% of address space!
 - Some pages are on disk instead of in memory

Refining our observation

- Each process page table is a sparse mapping
- Page tables are not randomly sparse
 - Occupied by sequential memory regions
 - Text, rodata, data+bss, stack

- 35 -

Page Table Structure

How to map "sparse list of dense lists"?

We are computer scientists!

- Insert a level of indirection
- Well, get the ECE folks to do it for us

Multi-level page table

- Page directory maps large chunks of address space to...
- ...Page tables, which map pages to frames

- 36 -

- 37 -

- 38 -

- 39 -

- 40 -

- 41 -

- 42 -

- 43 -

Sparse Mapping?

Assume 4 KByte pages, 4-byte PTEs

- Ratio: 1024:1
 - 4 GByte virtual address (32 bits) ⇒ 4 MByte page table

Now assume page *directory* with 4-byte PDEs

- 4-megabyte page table becomes 1024 4K page tables
- Plus one 1024-entry page directory to point to them

Sparse address space...

- ...means most page tables contribute nothing to mapping...
- ...would all be full of "empty" entries...
- ...so just use a "null pointer" in page directory instead.
- Result: empty 4GB address space specified by 4KB directory

- 44 - 15-410, S'06

Sparse Mapping?

Sparsely populated page directory

Contains pointers only to non-empty page tables

Common case

- Need 2 or 3 page tables
 - One or two map code, data
 - One maps stack
- Page directory has 1024 slots
 - Two are filled in with valid pointers
 - Remainder are "not present"

Result

- 2-3 page tables
- 1 page directory
- Map entire address space with 12-16Kbyte, not 4Mbyte

stack

-no-

-110-

-no-

- 45 -

Segmentation

Physical memory is (mostly) linear

Is virtual memory linear?

- Typically a set of "regions"
 - "Module" = code region + data region
 - Region per stack
 - Heap region

Why do regions matter?

- Natural protection boundary
- Natural sharing boundary

- 46 -

Segmentation: Mapping

- 47 -

Segmentation + Paging

80386 (does it all!)

- Processor address directed to one of six segments
 - CS: Code Segment, DS: Data Segment
 - 32-bit offset within a segment -- CS:EIP
- Descriptor table maps selector to segment descriptor
- Offset fed to segment descriptor, generates linear address
- Linear address fed through page directory, page table

- 48 -

x86 Type Theory

Instruction ⇒ segment selector

[PUSHL implicitly specifies selector in %SS]

Process ⇒ (selector ⇒ (base,limit))

[Global,Local Descriptor Tables]

Segment, address ⇒ linear address

Process \Rightarrow (linear address high \Rightarrow page table)

[Page Directory Base Register, page directory indexing]

Page Table: linear address middle ⇒ frame address

Memory: frame address, offset ⇒ ...

- 49 -

Summary

Processes emit virtual addresses

segment-based or linear

A magic process maps virtual to physical

No, it's not magic

- Address validity verified
- Permissions checked
- Mapping may fail (trap handler)

Data structures determined by access patterns

Most address spaces are sparsely allocated

- 50 -