
1

Deadlock (2)

Dave Eckhardt
Bruce Maggs

2

Synchronization

� Project 2 progress

� Mutex and condition variable should be "complete"

� Even if they include a temporary shortcut or two

� Should have "tested" them as much as you can with one
thread

� How much can you test them with one thread?

� Should be able to create threads

� Ok if thr_exit() looks like: while(1) continue;

� Not as good if it looks like: for(;;);

3

Synchronization

� Project 2 progress

� Don't split the coding in a bad way

� One popular bad way: Person A codes list/queue, syscall
stubs

� Person B codes everything else

� Person A will probably be in big trouble on the exam

4

Outline

� Review

� Prevention/Avoidance/Detection

� Today

� Avoidance

� Detection/Recovery

5

Deadlock - What to do?

� Prevention

� Pass a law against one of four ingredients

� Avoidance

� Processes pre-declare usage patterns

� Request manager avoids “unsafe states”

� Detection/Recovery

� Clean up only when trouble really happens

6

Deadlock Avoidance – Motivation

� Deadlock prevention passes laws

� Unenforceable: shared CD-writers???

� Annoying

� Mandatory lock-acquisition order may induce starvation

� Locked 23, 24, 25, ... 88, 89, now must lock 0...

� Lots of starvation opportunities

� Do we really need such strict laws?

� Couldn't we be more situational?

7

Deadlock Avoidance Assumptions

1. Processes pre-declare usage patterns

� Could enumerate all paths through allocation space

� Request R1, Request R2, Release R1, Request R3, ...
- or -

� Request R1, Request R3, Release R3, Request R1, ...

� Easier: declare maximal resource usage

� I will never need more than 7 tape drives and 1 printer

8

Deadlock Avoidance Assumptions

2. Processes proceed to completion

� Don't hold onto resources forever

� Obvious how this helps!

� Complete in “reasonable” time

� So it is ok, if necessary, to stall P2 until P1 completes

� We will try to avoid this

9

Safe Execution Sequence

� (P1, P2, P3, ... Pn) is a safe sequence if

� Every process Pi can be satisfied using

� currently-free resources F plus

� resources currently held by P1, P2, ...Pi

� Pi's waiting is bounded by this sequence

� P1 will run to completion, release resources

� P2 can complete with F + P1's + P2's

� P3 can complete with F + P1's + P2's + P3's

� Pi won't wait forever, no wait cycle, no deadlock

10

Safe State

� System in a safe state iff...

� there exists at least one safe sequence

� Worst-case situation

� Every process asks for every resource at once

� Follow the safe sequence (run processes serially)

� Slow, but not as slow as a deadlock!

� Serial execution is worst-case, not typical

� Usually execute in parallel

11

Request Manager - Naïve

� Grant request if

� Enough resources are free now

� Otherwise, tell requesting process to wait

� While holding resources

� Which are non-preemptible, ...

� Easily leads to deadlock

12

Request Manager – Avoidance

� Grant request if

� Enough resources are free now, and

� Enough resources would still be free

� For some process to complete and release resources

� And then another one

� And then you

� Otherwise, wait

� While holding a smaller set of resources...

� ...which we previously proved other processes can
complete without

13

Example (from text)

Who Max Has Room
P0 10 5 5
P1 4 2 2
P2 9 2 7
System 12 3 –
“Is it safe?”
“Yes, it's safe; it's very safe, so safe you wouldn't
believe it.”

Max declared
Has allocated
Room (Max-Has)

14

P1: 2 ⇒ 4

Who Max Has Room Who Max Has Room
P0 10 5 5 P0 10 5 5
P1 4 2 2⇒P1 4 4 0
P2 9 2 7 P2 9 2 7
System 12 3 –⇒System 12 1 –

15

P1: Complete

Who Max Has Room Who Max Has Room
P0 10 5 5 P0 10 5 5
P1 4 4 0⇒
P2 9 2 7 P2 9 2 7
System 12 1 –⇒System 12 5 –

16

P0: 5 ⇒ 10

Who Max Has Room Who Max Has Room
P0 10 5 5⇒P0 10 10 0

P2 9 2 7 P2 9 2 7
System 12 5 –⇒System 12 0 –

17

P0: Complete

Who Max Has Room Who Max Has Room
P0 10 10 0⇒

P2 9 2 7 P2 9 2 7
System 12 0 –⇒System 12 10 –

P1, P0, P2 is a safe sequence.
So the system was in a safe state.

18

Example (from text)

Who Max Has Room
P0 10 5 5
P1 4 2 2
P2 9 2 7
System 12 3 –
“Can P2 ask for more?
“Is it safe?”
“No, it's not safe, it's very dangerous, be careful.”

19

P2: 2 ⇒ 3?

Who Max Has Room Who Max Has Room
P0 10 5 5 P0 10 5 5
P1 4 2 2 P1 4 2 2
P2 9 2 7⇒P2 9 3 6
System 12 3 –⇒System 12 2 –

20

P2: 2 ⇒ 3?

Who Max Has Room Who Max Has Room
P0 10 5 5 P0 10 5 5
P1 4 2 2 P1 4 2 2
P2 9 2 7⇒P2 9 3 6
System 12 3 –⇒System 12 2 –

Now only P1 can be satisfied without waiting.

21

P1: 2 ⇒ 4?

Who Max Has Room Who Max Has Room
P0 10 5 5 P0 10 5 5
P1 4 2 2⇒P1 4 4 0
P2 9 3 6 P2 9 3 6
System 12 2 –⇒System 12 0 –

22

P1: Complete

Who Max Has Room Who Max Has Room
P0 10 5 5 P0 10 5 5
P1 4 4 0⇒
P2 9 3 6 P2 9 3 6
System 12 0 -⇒System 12 4 –

23

P1: Complete

Who Max Has Room Who Max Has Room
P0 10 5 5 P0 10 5 5
P1 4 4 0⇒
P2 9 3 6 P2 9 3 6
System 12 0 –⇒System 12 4 –

Problem: P0 and P2 are allowed to ask for >4.
If both do, both sleep: deadlock.

24

Avoidance - Key Ideas

� Safe state

� Some safe sequence exists

� Prove it by finding one

� Unsafe state: No safe sequence exists

� Unsafe may not be fatal

� Processes might exit early

� Processes might not use max resources today

25

Avoidance – Tradeoff

� Allowing only safe states is more flexible than
Prevention

� But rejecting all unsafe states reduces efficiency

� System could enter unsafe state and then return to
safety

� Hmm...

26

Avoidance - Unique Resources

� Unique resources instead of multi-instance?

� Graph algorithm

� Three edge types

� Claim (future request)

� Request

� Assign

27

“Claim” (Future-Request) Edges

Tape 2

P1

Tape 1

P2

Tape 3

P3

28

Claim ⇒ Request

Tape 2

P1

Tape 1

P2

Tape 3

P3

29

Request ⇒ Assignment

Tape 2

P1

Tape 1

P2

Tape 3

P3

30

Safe: No Cycle

Tape 2

P1

Tape 1

P2

Tape 3

P3

31

Which Requests Are Safe?

� Pretend to satisfy request

� Look for cycles in resultant graph

32

A Dangerous Request

Tape 2

P1

Tape 1

P2

Tape 3

P3

33

See Any Cycles?

Tape 2

P1

Tape 1

P2

Tape 3

P3

34

Are “Pretend” Cycles Fatal?

� Must we worry about all cycles?

� Nobody is waiting on a “pretend” cycle

	 Lots of the edges are only potential request edges

� We don't have a deadlock

 “Is it safe?”

35

Are “ Pretend” Cycles Fatal?

 No process can, without waiting

� Acquire maximum-declared resource set

 So no process can acquire, complete, release

� (for sure, without maybe waiting)

 Any new sleep could form a cycle

� “ No, it's not safe, it's very dangerous, be careful.”

 What to do?

� Don't grant the request (put the process to sleep now,
before it gets that resource)

36

Avoidance - Multi-instance Resources

 Example

� N interchangeable tape drives

� Could represent by N tape-drive nodes

� Needless computational expense

 Business credit-line model

� Bank assigns maximum loan amount (“ credit limit”)

� Business pays interest on current borrowing amount

37

Avoiding “ bank failure”

 Bank is “ ok” when there is a safe sequence

 One company can

� Borrow up to its credit limit

� Do well

� IPO

� Pay back its full loan amount

 And then another company, etc.

38

No safe sequence?

 Company tries to borrow up to limit

� Bank has no cash

� Company C1 must wait for money C2 has

� Maybe C2 must wait for money C1 has

 In real life

� C1 cannot make payroll

� C1 goes bankrupt

� Loan never paid back in full

	 Can model as “ infinite sleep”

39

Banker's Algorithm

int cash;
int limit[N]; /* credit limit */
int out[N] /* borrowed */;
boolean done[N]; /* global temp! */
int future; /* global temp! */

int progressor (int cash) {
 for (i = 0; i < N; ++i)
 if (!done[i])
 if (cash >= limit[i] - out[i])
 return (i);
 return(-1);
}

40

Banker's Algorithm

boolean is_safe(void) {
 future = cash;
 done[0..N] = false;

 while ((p = progressor(future)) > 0) {
 future += borrowed[p];
 done[p] = true;
 }
 return (done[0..N] == true)
}

41

Banker's Algorithm

 Can we loan more money to a company?

� Pretend we did

	 update cash and out[i]

� Is it safe?

	 Yes: lend more money

	 No: un-do to pre-pretending state, sleep

 Multi-resource Version

� Generalizes easily to N independent resource types

� See text

42

Avoidance - Summary

� Good news - No deadlock
+ No static “ laws” about resource requests

+ Allocations flexible according to system state

� Bad news

� Processes must pre-declare maximum usage

� Avoidance is conservative

 Many “ unsafe” states are almost safe

 System throughput reduced – extra sleeping

 3 processes, can allocate only 2 tape drives!?!?

43

Deadlock - What to do?

� Prevention

� Pass a law against one of four ingredients

� Avoidance

� Processes pre-declare usage patterns

� Request manager avoids “ unsafe states”

� Detection/Recovery

� Clean up only when trouble really happens

44

Detection & Recovery - Approach

� Don't be paranoid

� Don't refuse requests that might lead to trouble

 (someday)

 Most things work out ok in the end

� Even paranoids have enemies

� Sometimes a deadlock will happen

� Need a plan for noticing

� Need a policy for reacting

� Somebody must be told “ try again later”

45

Detection - Key Ideas

� “ Occasionally” scan for wait cycles

� Expensive

� Must lock out all request/allocate/deallocate activity

� Global mutex is the “ global variable” of concurrency

� Detecting cycles is an N-squared kind of thing

46

Scanning Policy

� Throughput balance

� Scan too often - system becomes (very) slow

� Scan before every sleep? Only in small systems

� Scan too rarely - system becomes (extremely) slow

� Policy candidates

� Scan every <interval>

� Scan when CPU is “ too idle”

47

Detection - Algorithms

� Detection: Unique Resources

� Search for cycles in resource graph

 (see above)

� Detection: Multi-instance Resources

� Slight variation on Banker's Algorithm

 (see text)

� Find a deadlock? Now what?

� Abort

� Preempt

48

Recovery - Abort

� Evict processes from the system

� All processes in the cycle?

� Simple & blame-free policy

� Lots of re-execution work later

� Just one process in the cycle?

� Which one?

 Priority? Work remaining? Work to clean up?

� Often immediately creates a smaller cycle – re-scan?

49

Recovery – Abort Just One?

P1

R1

P2

P3

R2

R3P3's plan
A(R3); A(R1); A(R2)

50

Recovery – Abort Just One?

P1

R1

P2

P3

R2

R3P3's plan
A(R3); A(R1); A(R2)

51

Recovery – Abort Just One?

R1

P2

P3

R2

R3P3's plan
A(R3); A(R1); A(R2)

52

Recovery – Can we do better?

� Aborting processes is undesirable

� Re-running processes is expensive

� Long-running tasks may never complete

� Starvation

53

Recovery - Resource Preemption

� Tell some process(es)

� lock(R346) ⇒“ EDEADLOCK”

� Policy question: which process loses?

� Lowest-numbered? ⇒ starvation!

� What does “ EDEADLOCK” mean?

� Can't just retry the request (make sure you see this)

� Must release other resources you hold, try later

� Forced release may require “ rollback” (yuck)

54

Summary - Deadlock

� Deadlock is...

� Set of processes

� Each one waiting for something held by another

� Four “ ingredients”

� Three approaches

� (aside from “ Hmmm...<reboot>”)

55

Deadlock - Approaches

� Prevention - Pass a law against one of:

� Mutual exclusion (unlikely!)

� Hold & wait (maybe, but...)

� No preemption (maybe?)

� Circular wait (sometimes)

56

Deadlock - Approaches

� Avoidance - “ Stay out of danger”

� Requires pre-declaration of usage patterns

� Not all “ danger” turns into trouble

� Detection & Recovery

� Scan frequency: delicate balance

� Preemption is hard, messy

� Rebooting

� Was it really hung?

57

Summary - Starvation

� Starvation is a ubiquitous danger

� Deadlock Prevention is one extreme

� Need something “ illegal” ?

� “ Illegal” = Eternal starvation!

� Detection & Recovery

� Less structural starvation

� Still must make good choices

