
1

Deadlock (1)

Dave Eckhardt
Bruce Maggs

Geoff Langdale

L13_Deadlock

2

Synchronization – P2

� You should really have

� Figured out where wrappers belong, why

� Made some system calls

� You should arguably have

� Designed mutexes, condition variables

� Drawn pictures of thread stacks

� You should “soon” have

� Mutexes and condition variables coded

� Thoughtful design for thr_create(), thr_join()

� Some code for thr_create(), and some “experience”

3

Synchronization – P2

� Debugging reminder

� We can't really help with queries like:

� We did x...

� ...something happened other than our expectation...

� ...can you tell us why?

� You need to progress beyond “something happened”

� What was it that happened, exactly?

� printf() is not always the right tool

� produces correct output only if run-time environment is right

� captures only what you told it to, only “C-level” stuff

� changes your code by its mere presence!!!

4

Synchronization – Readings

� Next three lectures

� Deadlock: 6.5.3, 6.6.3, Chapter 7

� Reading ahead

� Scheduling: Chapter 5

� Virtual Memory: Chapter 8, Chapter 9

5

Outline

� Process resource graph

� What is deadlock?

� Deadlock prevention

� Next time

� Deadlock avoidance

� Deadlock recovery

6

Tape Drives

� A word on “ tape drives”

� Ancient computer resources

� Access is sequential, read/write

� Any tape can be mounted on any drive

� One tape at a time is mounted on a drive

� Doesn't make sense for multiple processes to
simultaneously access a drive

� Reading/writing a tape takes a while

� Think “CD burner” ...

7

Process/Resource graph

Tape 1

P1

Tape 2

P2

Tape 3

P3

Request

8

Process/Resource graph

Tape 1

P1

Tape 2

P2

Tape 3

P3

Allocation

9

Waiting

Tape 1

P1

Tape 2

P2

Tape 3

P3

10

Release

Tape 1

P1

Tape 2

P2

Tape 3

P3

11

Reallocation

Tape 1

P1

Tape 2

P2

Tape 3

P3

12

Multi-instance Resources

P1 P2 P3

Tapes Disks

13

Definition of Deadlock

� Deadlock

� Set of N processes

� Each waiting for an event

� ...which can be caused only by another process in the set

� Every process will wait forever

14

Deadlock Examples

� Simplest form

� Process 1 owns printer, wants tape drive

� Process 2 owns tape drive, wants printer

� Less-obvious

� Three tape drives

� Three processes

� Each has one tape drive

� Each wants “ just” one more

� Can't blame anybody, but problem is still there

15

Deadlock Requirements

� Mutual Exclusion

� Hold & Wait

� No Preemption

� Circular Wait

16

Mutual Exclusion

� Resources aren't “ thread-safe” (“ reentrant”)

� Must be allocated to one process/thread at a time

� Can't be shared

� Programmable Interrupt Timer

� Can't have a different reload value for each process

17

Hold & Wait

� Process holds resources while waiting for more

mutex_lock(&m1);
mutex_lock(&m2);
mutex_lock(&m3);

� This locking behavior is typical

18

No Preemption

� Can't force a process to give up a resource

� Interrupting a CD-R burn creates a “coaster”

� Obvious solution

� CD-R device driver forbids second simultaneous open()

� If you can't open it, you can't pre-empt it...

19

Circular Wait

� Process 0 needs something process 4 has

� Process 4 needs something process 7 has

� Process 7 needs something process 1 has

� Process 1 needs something process 0 has – uh-oh...

� Described as “cycle in the resource graph”

20

Cycle in Resource Graph

Tape 2

P1

Tape 1

P2

Tape 3

P3

21

Deadlock Requirements

� Mutual Exclusion

� Hold & Wait

� No Preemption

� Circular Wait

� Each deadlock requires all four

22

Deadlock is not...

� ...a simple synchronization bug

� Deadlock remains even when those are cleaned up

� Deadock is a resource usage design problem

� ...the same as starvation

� Deadlocked processes don't ever get resources

� Starved processes don't ever get resources

� Deadlock is a “progress” problem; starvation is a
“bounded waiting” problem

�that “after-you, sir” dance in the corridor

� That's “ livelock” – continuous changes of state without
forward progress

23

Multi-Instance Cycle

P3P2P1

Tapes Disks

24

Multi-Instance Cycle (With Rescuer!)

P3P2P1

Tapes Disks

25

Cycle Broken

P3P2P1

Tapes Disks

26

Dining Philosophers

� The scene

� 410 staff at a Chinese restaurant

� A little short on utensils

27

Dining Philosophers

GHNF

MT

IJBM

28

Dining Philosophers

� Processes

� 5, one per person

� Resources

� 5 bowls (dedicated to a diner: no contention: ignore)

� 5 chopsticks

� 1 between every adjacent pair of diners

� Contrived example?

� Illustrates contention, starvation, deadlock

29

Dining Philosophers

� A simple rule for eating

� Wait until the chopstick to your right is free; take it

� Wait until the chopstick to your left is free; take it

� Eat for a while

� Put chopsticks back down

30

Dining Philosophers Deadlock

� Everybody reaches clockwise...

� ...at the same time?

31

Reaching Right

GHNF

MT

IJBM

32

Process graph

GHNF

MT

IJBM

33

Deadlock!

GHNF

MT

IJBM

34

Dining Philosophers – State

int stick[5] = { -1 }; /* owner */
condition avail[5]; /* now avail. */
mutex table = { available };

/* Right-handed convention */
right = diner;
left = (diner + 4) % 5;

35

start_eating(int diner)

mutex_lock(table);

while (stick[right] != -1)
 condition_wait(avail[right], table);
stick[right] = diner;

while (stick[left] != -1)
 condition_wait(avail[left], table);
stick[left] = diner;

mutex_unlock(table);

36

done_eating(int diner)

mutex_lock(table);

stick[left] = stick[right] = -1;
condition_signal(avail[right]);
condition_signal(avail[left]);

mutex_unlock(table);

37

Can We Deadlock?

	 At first glance the table mutex protects us

 Can't have “everybody reaching right at same time” ...

 ...mutex allows only one reach at the same time, right?

38

Can We Deadlock?

	 At first glance the table mutex protects us

 Can't have “everybody reaching right at same time” ...

 ...mutex allows only one reach at the same time, right?

	 Maybe we can!

 condition_wait() is a “ reach”

 Can everybody end up in condition_wait()?

39

First diner gets both chopsticks

40

Next gets right, waits on left

41

Next two get right, wait on left

42

Last waits on right

43

First diner stops eating - briefly

44

First diner stops eating - briefly

 signal()

45

Next Step – One Possibility

“Natural” –
longest-waiting diner progresses

⇒

46

Next Step – Another Possibility

Or –
somebody else!

⇒

47

Last diner gets right, waits on left

48

First diner gets right, waits on left

Now things
get boring.

49

Deadlock - What to do?

	 Prevention

	 Avoidance

	 Detection/Recovery

	 Just reboot when it gets “ too quiet”

50

1: Prevention

	 Restrict behavior or resources

 Find a way to violate one of the 4 conditions

� To wit...?

� What we will talk about today

 4 conditions, 4 possible ways

51

2: Avoidance

� Processes pre-declare usage patterns

� Dynamically examine requests

 Imagine what other processes could ask for

 Keep system in “safe state”

52

3: Detection/Recovery

� Maybe deadlock won't happen today...

� ...Hmm, it seems quiet...

� ...Oops, here is a cycle...

� Abort some process

 Ouch!

53

4: Reboot When It Gets “Too Quiet”

� Which systems would be so simplistic?

54

Four Ways to Forgiveness

� Each deadlock requires all four

 Mutual Exclusion

 Hold & Wait

 No Preemption

 Circular Wait

� “Deadlock Prevention” - this is a technical term

 Pass a law against one (pick one)

 Deadlock happens only if somebody transgresses!

55

Outlaw Mutual Exclusion?

� Don't have single-user resources

 Require all resources to “work in shared mode”

� Problem

 Chopsticks???

 Many resources don't work that way

56

Outlaw Hold&Wait?

� Acquire resources all-or-none

start_eating(int diner)

mutex_lock(table);
while (1)
 if (stick[lt] == stick[rt] == -1)
 stick[lt] = stick[rt] = diner
 mutex_unlock(table)
 return;
 condition_wait(released, table);

57

Problems

� “Starvation”

 Larger resource set makes grabbing everything harder

� No guarantee a diner eats in bounded time

� Low utilization

 Larger peak resource needs hurts whole system always

� Must allocate 2 chopsticks (and waiter!)

� Nobody else can use waiter while you eat

58

Outlaw Non-preemption?

� Steal resources from sleeping processes!

start_eating(int diner)
right = diner; rright = (diner+1)%5;
mutex_lock(table);
while (1)
 if (stick[right] == -1)
 stick[right] = diner
 else if (stick[rright] != rright)
 /* right can't be eating: take! */
 stick[right] = diner;
...same for left...
mutex_unlock(table);

59

Problem

� Some resources cannot be cleanly preempted

� CD burner

60

Outlaw Circular Wait?

� Impose total order on all resources

� Require acquisition in strictly increasing order

� Static order may work: allocate memory, then files

� Dynamic – may need to “start over” sometimes

� Traversing a graph

� lock(4), visit(4)

� lock(13), visit(13)

� lock(0)?

� Nope!

� unlock(4), unlock(13)

� lock(0), lock(4), lock(13), ...

61

Assigning a Total Order

� Lock order: 4, 3, 2, 1, 0: right, then left

� lock (4,3) for one diner; lock(3,2) for neighbor, ...

� Issue: (diner == 0) ⇒ (left == 4)

� Would lock(0), lock(4): left, then right!

� Requires special-case locking code to get order right

if diner == 0
 right = (diner + 4) % 5;
 left = diner;
else
 right = diner;
 left = (diner + 4) % 5;
...

62

Problem

� May not be possible to force allocation order

� Some trains go east, some go west

63

Deadlock Prevention problems

� Typical resources require mutual exclusion

� All-at-once allocation can be painful

� Hurts efficiency

� May starve

� Resource needs may be unpredictable

� Preemption may be impossible

� Or may lead to starvation

� Ordering restrictions may be impractical

64

Deadlock Prevention

� Pass a law against one of the four ingredients

� Great if you can find a tolerable approach

� Very tempting to just let processes try their luck

65

Next Time

� Deadlock Avoidance

� Deadlock Recovery

