
15-410, S'06- 1 -

Yield
Feb. 10, 2006

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L12a_Yield

15-410
“...process_switch(P2) 'takes a while'...”

15-410, S'06- 2 -

Road Map

Day Option 1 Option 2
Friday Yield Yield
Monday Deadlock Deadlock
Wednesday Deadlock Deadlock
Friday P2 questions VM1
Monday VM1 P2 questions
Wednesday VM2 VM2

My suggestion: Option 1
Either will require you to come to class with questions!
(I will come to class with a lecture..don't make me use it)

15-410, S'06- 3 -

Outline

Context switchContext switch

� Motivated by yield()

� This is a core idea of this class

� You will benefit if your P3 implementation is clean and solid

� There's more than one way to do it

� Even more than one good way

� As with P2 thread_fork part of the design is figuring
out what parameters context_switch should take...

� This lecture is “early”

� Struggle with it today

� Hopefully it'll be easier when you struggle with it in P3

� Note: today we'll talk about every kind of thread but P2

15-410, S'06- 4 -

Mysterious yield()

T1() {
 while (1)
 yield(T2);
}

T2() {
 while (1)
 yield(T1);
}

15-410, S'06- 5 -

User-space Yield

Consider Consider pure user-space threadspure user-space threads

� The opposite of Project 2

� You implement threads inside a single-threaded process

� There is no thread_fork...

What is a thread in that world?What is a thread in that world?

� A stack

� “Thread control block” (TCB)

� Locator for register-save area

� Housekeeping information

15-410, S'06- 6 -

Big Picture

Thread blocks

Thread stacks

Code, Data

15-410, S'06- 7 -

Big Picture

Thread blocks

Thread stacks

Code, Data

%esp
%eax
%eip

CPU
State

42

15-410, S'06- 8 -

Running the Other Thread

Thread blocks

Thread stacks

Code, Data

%esp
%eax
%eip

CPU
State

99

15-410, S'06- 9 -

User-space Yield

yield(user-thread-3)yield(user-thread-3)
save my registers on stack
/* magic happens here */
restore thread 3's registers from thread 3's stack
return; /* to thread 3! */

15-410, S'06- 10 -

Todo List

General-purpose registersGeneral-purpose registers

Stack pointerStack pointer

Program counterProgram counter

15-410, S'06- 11 -

No magic!

/* C, asm() may not be best for this! */

yield(user-thread-3){
save registers on stack /* asm(...) */
tcb->sp = get_esp(); /* asm(...) */
tcb->pc = &there; /* gcc ext. */
tcb = findtcb(user-thread-3);
set_esp(tcb->sp); /* asm(...) */
jump(tcb->pc); /* asm(...) */

there:
restore registers from stack /* asm() */
return;

}

15-410, S'06- 12 -

The Program Counter

What values can the PC (%eip) contain?What values can the PC (%eip) contain?

� In a pure user-thread environment, thread switch
happens only in yield

� Yield sets saved PC to start of “restore registers”

All non-running threads have the All non-running threads have the samesame saved PC saved PC

� Please make sure this makes sense to you

15-410, S'06- 13 -

Remove Unnecessary Code – 1

yield(user-thread-3){
save registers on stack
tcb->sp = get_esp();
tcb->/////pc// = &there;//////////
tcb = findtcb(user-thread-3);
set_esp(tcb->sp);
jump(tcb->/////pc// &there);

there:
restore registers from stack
return

}

15-410, S'06- 14 -

Remove Unnecessary Code – 2

yield(user-thread-3){
save registers on stack
tcb->sp = get_esp();
tcb = findtcb(user-thread-3);
set_esp(tcb->sp);
restore registers from stack
return

}

15-410, S'06- 15 -

User Threads vs. Kernel
Processes
What if a What if a processprocess yields to another? yields to another?

� “Compare & contrast, in no more than 1,000 words...”

User threadsUser threads

� Share memory

� Threads not protected from each other

ProcessesProcesses

� Do not generally share memory

� P1 must not modify P2's saved registers

Where are process save areas and control blocks?Where are process save areas and control blocks?

15-410, S'06- 16 -

Kernel Memory Picture

Kernel code

Control Blocks

Kernel stacks

User code

User stacks

15-410, S'06- 17 -

P1's Yield(P2) steps

P1 calls yield(P2)P1 calls yield(P2)

INT 50 INT 50 ⇒⇒ boom!boom!

Processor trap protocolProcessor trap protocol

� Saves some registers on P1's kernel stack

� This is a stack switch (user ⇒ kernel), intel-sys.pdf 5.10

� Top-of-kernel-stack specified by %esp0 register

� Trap frame (x86): %ss & %esp, %eflags, %cs & %eip

Assembly-language stubAssembly-language stub

� Saves more registers

� Starts C trap handler

Then...?Then...?

15-410, S'06- 18 -

P1's Yield(P2) steps
sys_yield()sys_yield()

� return(process_switch(P2))

Assembly-language stubAssembly-language stub

� Restores registers from P1's kernel stack

Processor return-from-trap protocol (aka IRET)Processor return-from-trap protocol (aka IRET)

� Restores %ss & %esp, %eflags, %cs & %eip

INT 50 instruction “completes”INT 50 instruction “completes”

� Back in user-space

P1 yield() library routine returnsP1 yield() library routine returns

15-410, S'06- 19 -

What happened to P2??
process_switch(P2) “ takes a while”process_switch(P2) “ takes a while”

� When P1 calls it, it “ returns” to P2

� When P2 calls it, it “ returns” to P1 (eventually)

15-410, S'06- 20 -

Inside process_switch()

ATOMICALLYATOMICALLY
enqueue_tail(runqueue, cur_pcb);
save registers /* P1's stack */
cur_pcb = dequeue(runqueue, P2);
stackpointer = cur_pcb->sp;
restore registers /* P2's stack */
return;

/* some details omitted */

15-410, S'06- 21 -

User-mode Yield vs. Kernel-mode

Kernel context switches happen for more reasonsKernel context switches happen for more reasons

� good old yield(), but also...

� Message passing from P1 to P2

� P1 sleeping on disk I/O, so run P2

� CPU preemption by clock interrupt

15-410, S'06- 22 -

I/O completion Example

P1 calls read()P1 calls read()

In kernelIn kernel

� read() starts disk read

� read() calls condition_wait(&buffer); /* details vary */

� condition_wait() calls process_switch()

� process_switch() returns to P2

15-410, S'06- 23 -

I/O Completion Example

While P2 is runningWhile P2 is running

� Disk completes read, interrupts P2 into kernel

� Interrupt handler calls condition_signal(&buffer);

Option 1Option 1

� condition_signal() marks P1 as runnable, returns

� Interrupt handler returns to P2

Option 2Option 2

� condition_signal() calls process_switch(P1) (only fair...)

� P2 will finish the interrupt handler much later

� Remember in P3 to confront implications of this!

15-410, S'06- 24 -

Clock interrupts

P1 doesn't “ask for” clock interruptP1 doesn't “ask for” clock interrupt

� Clock handler forces P1 into kernel

� Kernel stack looks like a “system call”

� As if user process had called handle_timer()

� But it was involuntary

P1 doesn't say who to yield toP1 doesn't say who to yield to

� (it didn't make the “ system call”)

� Scheduler chooses next process

15-410, S'06- 25 -

Summary

Similar steps for user space, kernel spaceSimilar steps for user space, kernel space

Primary differencesPrimary differences

� Kernel has open-ended competitive scheduler

� Kernel more interrupt-driven

Implications for 410 projectsImplications for 410 projects

� P2: firmly understand thread stacks

� thread_create() stack setup

� cleanup

� race conditions

� P3: firmly understand kernel context switch

Advice: draw pictures of stacksAdvice: draw pictures of stacks

