
15-410, S'06- 1 -

Synchronization #3
Feb. 6, 2006

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L10_Synch

15-410
“...Arguably less wrong...”

15-410, S'06- 3 -

Outline

Synch 1Synch 1

� Two building blocks

� Three requirements for mutual exclusion

� Algorithms people don't use for mutual exclusion

Synch 2Synch 2

� How mutual exclusion is really implemented

Synch 3Synch 3

� Condition variables

� Under the hood

� The atomic-sleep problem

� Semaphores, monitors – overview

15-410, S'06- 4 -

Road Map

Two Fundamental operationsTwo Fundamental operations

√ Atomic instruction sequence

⇒ Voluntary de-scheduling

15-410, S'06- 5 -

Voluntary de-scheduling

The SituationThe Situation

� You hold lock on shared resource

� But it's not in “the right mode”

Action sequenceAction sequence

� Unlock shared resource

� Write down “wake me up when...”

� Go to sleep until resource changes state

15-410, S'06- 6 -

What not to do

while (!reckoning) {
 mutex_lock(&scenario_lk);
 if ((date >= 1906-04-18) &&
 (hour >= 5))
 reckoning = true;
 else
 mutex_unlock(&scenario_lk);
}
wreak_general_havoc();
mutex_unlock(&scenario_lk);

15-410, S'06- 7 -

What not to do

Why is this wrong?Why is this wrong?

� Make sure you understand!

� See previous two lectures

� Do not do this in P2 or P3

� Not even if it is really tempting in P3

15-410, S'06- 8 -

Arguably Less Wrong
While (!reckoning) {
 mutex_lock(&scenario_lk);
 if ((date >= 1906-04-18) &&
 (hour >= 5))
 reckoning = true;
 else {
 mutex_unlock(&scenario_lk);
 sleep(1);
 }
}
wreak_general_havoc();
mutex_unlock(&scenario_lk);

15-410, S'06- 9 -

Arguably less wrong

Don't do this eitherDon't do this either

� How wrong is “ a while”?

� N-1 times it's much too short

� Nth time it's much too long

� It's wrong every time

� What's the problem?

� We don't really want a duration!

� We want to wait for a condition

15-410, S'06- 10 -

Something is missing

Mutex protects shared stateMutex protects shared state

� Also encapsulates “ interfering code sequence” as object

� Good

How can we sleep for the How can we sleep for the rightright duration? duration?

� Get an expert to tell us!

� Encapsulate “ the right duration”

� ...into a condition variable object

15-410, S'06- 11 -

Once more, with feeling!

mutex_lock(&scenario_lk);
while (cvar = wait_on()) {
 cond_wait(&scenario_lk, &cvar);
}
wreak_general_havoc(); /* locked! */
mutex_unlock(&scenario_lk);

15-410, S'06- 12 -

wait_on()?

if (y < 1906)
 return (&new_year);
else if (m < 4)
 return (&new_month);
else if (d < 18)
 return (&new_day);
else if (h < 5)
 return (&new_hour);
else
 return (0);

15-410, S'06- 13 -

What wakes us up?

for (y = 1900; y < 2000; y++)
 for (m = 1; m <= 12; m++)
 for (d = 1; d <= days(m); d++)
 for (h = 0; h < 24; h++)
 ...
 cond_broadcast(&new_hour);
 cond_broadcast(&new_day);
 cond_broadcast(&new_month);
 cond_broadcast(&new_year);

15-410, S'06- 14 -

Condition Variable Requirements

Keep track of threads asleep “ for a while”Keep track of threads asleep “ for a while”

Allow notifier thread to wake sleeping thread(s)Allow notifier thread to wake sleeping thread(s)

Must be thread-safeMust be thread-safe

� Many threads may call condition_wait() at same time

� Many threads may call condition_signal() at same time

� Say, those look like “ interfering sequences” ...

15-410, S'06- 15 -

Why two parameters?

condition_wait(&mutex, &cvar);

Mutex required to access/modify the “world” stateMutex required to access/modify the “world” state

Whoever awakens you will need to hold that mutexWhoever awakens you will need to hold that mutex

� So you'd better give it up.

When you wake up, you will need to hold it againWhen you wake up, you will need to hold it again

� “Convenient” for condition_wait() to un-lock/re-lock

But there's something more subtleBut there's something more subtle

15-410, S'06- 16 -

Inside a Condition Variable

cvar->queuecvar->queue

� of sleeping processes

� FIFO or more exotic

cvar->mutexcvar->mutex

� Protects queue against interfering wait()/signal() calls

� This isn't the caller's mutex (locking client's world state)

� This is our secret invisible mutex

15-410, S'06- 17 -

Inside a Condition Variable
cond_wait(mutex, cvar)
{
 lock(cvar->mutex);
 enq(cvar->queue, my_thread_id());
 unlock(mutex);
 ATOMICALLY {
 unlock(cvar->mutex);
 kernel_please_pause_this_thread();
 }
}

What is this “ATOMICALLY” stuff?What is this “ATOMICALLY” stuff?

15-410, S'06- 18 -

What We Hope For

cond_wait(m, c); cond_signal(c);
enq(c->que, me);
unlock(m);
unlock(c->m);
kern_thr_pause();

lock(c->m);
id = deq(c->que);
thr_wake(id);
unlock(c->m);

15-410, S'06- 19 -

Pathological Execution Sequence

cond_wait(m, c); cond_signal(c);
enq(c->que, me);
unlock(m);
unlock(c->m);

lock(c->m);
id = deq(c->que);
thr_wake(id);
unlock(c->m);

kern_thr_pause();
thr_wake(id) ⇒ ERR_NOT_ASLEEP

15-410, S'06- 20 -

Achieving wait() Atomicity

Disable interrupts (if you are a kernel)Disable interrupts (if you are a kernel)

Rely on OS to implement condition variablesRely on OS to implement condition variables

� (Why is this not the best idea?)

Have a better kernel thread-sleep interfaceHave a better kernel thread-sleep interface

15-410, S'06- 21 -

Achieving wait() Atomicity

P2 challengesP2 challenges

� Understand the issues!

� mutex, cvar

� Understand the host kernel we give you

� Put the parts together

� Don't use “wrong” or “arguably less wrong” approaches!

� Seek solid, clear solutions

� There's more than one way to do it

� Make sure to pick a correct way...

� Try to pick a good way.

15-410, S'06- 22 -

Outline

Last timeLast time

� How mutual exclusion is really implemented

Condition variablesCondition variables

� Under the hood

� The atomic-sleep problem

⇒⇒ SemaphoresSemaphores

MonitorsMonitors

15-410, S'06- 23 -

Semaphore Concept

Semaphore is a different encapsulation objectSemaphore is a different encapsulation object

� Can produce mutual exclusion

� Can produce sleep-until-it's-time

Intuition: counted resourceIntuition: counted resource

� Integer represents “number available”

� Semaphore object initialized to a particular count

� Thread blocks until it is allocated an instance

15-410, S'06- 24 -

Semaphore Concept

wait(), aka P(), aka proberen (“wait”)wait(), aka P(), aka proberen (“wait”)

� wait until value > 0

� decrement value (“ taking” one instance)

signal(), aka V(), aka verhogen (“ increment”)signal(), aka V(), aka verhogen (“ increment”)

� increment value (“ releasing” one instance)

Just one small issue...Just one small issue...

� wait() and signal() must be atomic

15-410, S'06- 25 -

“Mutex-style” Semaphore

semaphore m = 1;

do {
 wait(m); /* mutex_lock() */
 ..critical section...
 signal(m); /* mutex_unlock() */

 ...remainder section...
} while (1);

15-410, S'06- 26 -

“Condition-style” Semaphore

Thread 0 Thread 1
wait(c);

result = 42;
signal(c);

use(result);

15-410, S'06- 27 -

“Condition with Memory”

Semaphores retain memory of signal() events
“full/empty bit” - unlike condition variables

Thread 0 Thread 1
result = 42;
signal(c);

wait(c);
use(result);

15-410, S'06- 28 -

Semaphore vs. Mutex/Condition

Good newsGood news

� Semaphore is a higher-level construct

� Integrates mutual exclusion, waiting

� Avoids mistakes common in mutex/condition API

	 signal() too early is “ lost”

	 ...

15-410, S'06- 29 -

Semaphore vs. Mutex/Condition

Bad newsBad news

� Semaphore is a higher-level construct

� Integrates mutual exclusion, waiting

	 Some semaphores are “mutex-like”

	 Some semaphores are “condition-like”

	 How's a poor library to know?

 Spin-wait or not???

15-410, S'06- 30 -

Semaphores - 31 Flavors

Binary semaphoreBinary semaphore

� It counts, but only from 0 to 1!

	 “Available” / “Not available”

� Consider this a hint to the implementor...

	 “Think mutex!”

Non-blocking semaphoreNon-blocking semaphore

� wait(semaphore, timeout);

Deadlock-avoidance semaphoreDeadlock-avoidance semaphore

� #include <deadlock.lecture>

15-410, S'06- 31 -

My Personal Opinion

OneOne “simple, intuitive” “simple, intuitive” synchronization object synchronization object

� In 31 performance-enhancing flavors!!!

“The nice thing about standards is that you have so “The nice thing about standards is that you have so
many to choose from.”many to choose from.”

� Andrew S. Tanenbaum

Conceptually simpler to have two objectsConceptually simpler to have two objects

� One for mutual exclusion

� One for waiting

� ...after you've understood what's actually happening

15-410, S'06- 32 -

Semaphore Wait: Inside Story
wait(semaphore s)
 ACQUIRE EXCLUSIVE ACCESS
 --s->count;
 if (s->count < 0)
 enqueue(s->queue, my_id());
 ATOMICALLY
 RELEASE EXCLUSIVE ACCESS
 thread_pause()
 else
 RELEASE EXCLUSIVE ACCESS

15-410, S'06- 33 -

Semaphore Signal: Inside Story
signal(semaphore s)
 ACQUIRE EXCLUSIVE ACCESS
 ++s->count;
 if (s->count <= 0) {
 tid = dequeue(s->queue);
 thread_wakeup(tid);
 RELEASE EXCLUSIVE ACCESS

What's all the shouting?What's all the shouting?

� An exclusion algoritm much like a mutex, or

� OS-assisted atomic de-scheduling

15-410, S'06- 34 -

Monitor
Basic conceptBasic concept

� Semaphores eliminate some mutex/condition mistakes

� Still some common errors

	 Swapping “signal()” & “wait()”

	 Accidentally omitting one

Monitor: higher-level abstractionMonitor: higher-level abstraction

� Module of high-level language procedures

	 All access some shared state

� Compiler adds synchronization code

	 Thread running in any procedure blocks all thread entries

15-410, S'06- 35 -

Monitor “commerce”
int cash_in_till[N_STORES] = { 0 };
int wallet[N_CUSTOMERS] = { 0 } ;

boolean buy(int cust, store, price) {
 if (wallet[cust] >= price) {
 cash_in_till[store] += price;
 wallet[cust] -= price;
 return (true);
 } else
 return (false);
}

15-410, S'06- 36 -

Monitors – What about waiting?

Automatic mutal exclusion is nice...Automatic mutal exclusion is nice...

� ...but it is too strong

Sometimes one thread needs to wait for anotherSometimes one thread needs to wait for another

� Automatic mutual exclusion forbids this

� Must leave monitor, re-enter - when?

Have we heard this “when” question before?Have we heard this “when” question before?

15-410, S'06- 37 -

Monitor Waiting – The Problem
void
stubbornly_cash_check(acct a, check c)
{
 while (account[a].bal < check.val) {
 ...Sigh, must wait for a while...
 ...What goes here? I forget...
 }
 account[a].bal -= check.val;
}

15-410, S'06- 38 -

Monitor Waiting – Wrong Solution

boolean
try_cash_check(acct a, check c)
{
 if (account[a].bal < check.val)
 return (false); /* pass the buck */
 account[a].bal -= check.val;
 return (true);
}

15-410, S'06- 39 -

Monitor condition variables

Similar to condition variables we've seenSimilar to condition variables we've seen

condition_wait(cvar)condition_wait(cvar)

� Only one parameter

� Mutex-to-drop is implicit

� (the “monitor mutex”)

� Operation

� “Temporarily exit monitor” -- drop the mutex

� Wait until signalled

� “Re-enter monitor” - re-acquire the mutex

15-410, S'06- 40 -

Monitor Waiting
void
stubbornly_cash_check(acct a, check c)
{
 while (account[a].bal < check.val) {
 cond_wait(account[a].activity);
 }
 account[a].bal -= check.val;
}

Q: Who would signal() this cvar?Q: Who would signal() this cvar?

15-410, S'06- 41 -

Monitor condition variables

signal() policy question - which thread to run?signal() policy question - which thread to run?

� Signalling thread? Signalled thread?

� Can argue either way

� Or: signal() exits monitor as side effect!

� Different signal() policies mean different monitor flavors

15-410, S'06- 42 -

Summary

Two fundamental operationsTwo fundamental operations

� Mutual exclusion for must-be-atomic sequences

� Atomic de-scheduling (and then wakeup)

Mutex/condition-variable (“pthreads”) styleMutex/condition-variable (“pthreads”) style

� Two objects for two core operations

Semaphores, MonitorsSemaphores, Monitors

� Semaphore: one object

� Monitor: invisible compiler-generated object

� Same core ideas inside

15-410, S'06- 43 -

Summary

What you should knowWhat you should know

� Issues/goals

� Underlying techniques

� How environment/application design matters

All done with synchronization?All done with synchronization?

� Only one minor issue left

� Deadlock

