Boot Camp

Dave Eckhardt
deQu@andrew.cmu.edu
Bruce Maggs
bmm@cs.cmu.edu



This Is a Hard Class

* CS doesn't have “capstone” classes, but similar...

¢ Traditional hazards

- 410 letter grade one lower than typical classes

— All other classes this semester: one grade lower
° Aim

— If you aim for a B you might not get one

— If you aim for a C you might not get one

- “I'll drop 1f I can't get an A”

* You must discuss this with your partner early



Good News

e Good news...1it can be done!

— It really 1s possible for all groups to turn in working
kernels (we have constructive proof)

e Remainder of this lecture

— How to get from here to there



This 1s a Transformative Class

* Genuine achievement, available to you
— What is an OS, really?

— Mutual exclusion, synchronization, concurrency
— Deadlock

* Design, planning

* Serious competence in debugging!



Work Flow — You may be used to...

* Assignment handout = code outline

* Compilation implies correctness
* Graded by a script
* All done!

— Never use 1t again

— Delete 1t at end of semester

o Total opposite of real life



Work Flow — 410 Additions

* Design

* Divide into parts

* Manage your partner
* Merge

* Debug hard problems



Surprises

* “Code complete” means “I am far behind”

— Merge can take three days
— Then you start to find bugs

* Code with “the right 1dea” will immediately crash
- If you're lucky!
* This 1s not a “‘basic 1dea 1s right” class

— You can't ship “basic 1ideas” to customers

— Understand all details—/zen you have the basic idea



On Debugging

As soon as we started programming, we
found to our surprise that it wasn't as easy to
get programs right as we had thought.
Debugging had to be discovered. I can
remember the exact instant when I realized
that a large part of my life from then on was
going to be spent 1n finding mistakes in my
Own programs.

— Maurice Wilkes (1949)



Debugging

* Bugs aren't just last-minute glitches

* They are crucial learning experiences

- Learning a lot can take a lot of time

10



What Does A Bug Mean?

e “It tells me 'triple fault' — why??”

— Research: 20 minutes
— Think: 20 minutes
— Debug: 2 hours.

— ...three times.
* May need to wrife code to trap a bad bug
— Asserts or more-targeted debug module
* Then you will find your design was wrong!

— Don't be shocked — this 1s part of 410 / life
11



“All Done”?

* Finally, when you're done...

— You will use your code for the next assignment!

- We will read 1t (goal: every line)

12



Interlude

e What is source code “for’?
— What 1s done with 1t?

13



Interlude

* The purpose of code 1s for people to read

- By areviewer / security auditor
- By your group

— By your manager

— By your successor

— By you six months later (6 hours later if no sleep)

* Oh, yeah, the compiler reads it too

14



Confront the Material

* We are doing printf() all the way down

— Subroutine linkage, how & why

— Stub routine, IDT entry, trap handler wrapper
— Output/input-echo interlock

— Logical cursor vs. physical cursor

— Video memory (what does scrolling mean?)

* Can't really gloss over anything

15



On Investing

* A week of coding can sometimes save
an hour of thought.

— Josh Bloch

16



Confront Debugging

e Real life: you will debug other people's code

— Any bug could be yours, partner's, ours, or Simics;
you need to find it.

* Can't debug using only printf()

— printf() changes your code

— printf() may be broken by whatever breaks your code
— Learn the Simics debugger

— Assertions, consistency checks

- Debugging code

17



Confront Debugging

* %2 hour of studying the debugger
- vs. 2 days of thrashing
* Papering over a problem

— Re-ordering object files to avoid crash

18



How to Have Trouble

* How to get an R
— Arrive unprepared (e.g., barely escape 113, 213)

— Do everything at the last minute
— Don't read the book or come to class

— Hide from course staff no matter what
* How to geta D

— Don't get the core of the kernel project working

* (There are other ways, but this one is popular)

19



Warning About 15-213

* [t's an important class

* We expect you to know
- Byte, word, register, 1<<2
- Thread, stack
— malloc(), free() (when & why)

— how to translate C < x86

* Trouble with 2137

- Was the malloc() lab a struggle?
— Expect to spend extra effort on 410

20



Warning to Graduate Students

* This is an undergraduate class
— There will be a diversity of grades

* Getting “average grades on every assignment”
may well mean a C, not a B

* Working really hard and doing everything
somewhere between “ok’ and “well” may mean a
B, not an A.

— B requires repeated solid performance
— A requires repeated excellence

- (“Everything pretty much worked” 1s C territory)



Doing Well — Embrace the
Experience

* Embrace the Unix development experience

— If you try to keep it at arm's length it will slow you
down

* Embrace the Simics debugger

— If you try to keep it at arm's length it will slow you
down

e Embrace source control

- If you keep it at arm's length ...

22



Doing Well — Invest in Good Code

* Mentally commit to writing good code

— Not just something kinda-ok

— You will depend on your code
* Anand Thakker

— Remind yourself that you love yourself

— So you should wrote good code for yourself

23



Doing Well — Start Early

e Starting a week late on a 2-week project will be
bad

* Not making “just one”” checkpoint can be bad

— Missing two kernel-project checkpoints...

* ...may make passing impossible.

24



Doing Well — Read Partner's Code

* You will need to read everything your partner
wrote

- (and answer test questions about 1t)
* Set up a mechanism

— Daily meeting? Careful reading of merge logs?
* Do “one of each”

— Partner does N-1 stub routines, you should do the
hardest

25



Doing Well — Time for Design

* “Design” means you may need to think overnight

26



How to get an A

* Understand everything

— (consider 2-3 ways to do each thing, pick the best)
* Read all of your partner's code
* Work with your partner

— (not: work alone for 4-5 weeks out of 6, then (fail to)
merge)

27



How to get an A

* Write genuinely excellent code

* Do things which kelp you
— asserts, good variable names, source control

* Document before coding

* Be “done” days early

28



