Lock-Free Programming

Geoff Langdale

L31 Lockfree

Desynchronization

. This is an interesting topic

. This will (may?) become even more relevant with near
ubiquitous multi-processing

. Still: please don’t rewrite any Project 3s!

L31 Lockfree

Synchronization

. We received notification via the web form that one
group has passed the P3/P4 test suite. Congratulations!

. We will be releasing a version of the fork-wait bomb

which doesn't make as many assumptions about task
Id's.

~ Please look for it today and let us know right away if it
causes any trouble for you.

Personal and group disk quotas have been grown in

order to reduce the number of people running out over
the weekend

- if you try hard enough you'll still be able to do it.

L31 Lockfree

Outline

Problems with locking

Definition of Lock-free programming

Examples of Lock-free programming

Linux OS uses of Lock-free data structures
Miscellanea (higher-level constructs, ‘wait-freedom’)

Conclusion

L31 Lockfree

Problems with Locking

. This list is more or less contentious, not equally
relevant to all locking situations:

- Deadlock

— Priority Inversion

- Convoying

- “Async-signal-safety”

— Kill-tolerant availability
-~ Pre-emption tolerance

— Overall performance

L31 Lockfree

Problems with Locking 2

Deadlock

-~ Processes that cannot proceed because they are waiting
for resources that are held by processes that are waiting
for...

Priority inversion

— Low-priority processes hold alock required by a higher-
priority process

— Priority inheritance a possible solution

L31 Lockfree

Problems with Locking 3

. Convoying

— Like the 61-series buses on Forbes Avenue
. Well, not exactly (overtaking stretches the metaphor?)
— Several processes need locks in aroughly similar order

— One slow process gets in first
— All the other processes slow to the speed of the first one

L31 Lockfree

Problems with Locking 4

. ‘Async-signal safety’
— Signal handlers can’t use lock-based primitives
- Especially malloc and free
- Why?

. Suppose athread receives a signal while holding a user-
level lock in the memory allocator

. Signal handler executes, calls malloc, wants the lock
. Kill-tolerance

— If threads are killed/crash while holding locks, what
happens?

L31 Lockfree

Problems with Locking 5

. Pre-emption tolerance

- What happens if you're pre-empted holding a lock?
. Overall performance

- Arguable

— Efficient lock-based algorithms exist

- Constant struggle between simplicity and efficiency
- Example. thread-safe linked list with lots of nodes

. Lock the whole list for every operation?
. Reader/writer locks?
. Allow locking individual elements of the list?

L31 Lockfree

Lock-free Programming

Thread-safe access to shared data without the use of
synchronization primitives such as mutexes

Possible but not practical in the absence of hardware
support

Example: Lamport’s “Concurrent Reading and Writing”
- CACM 20(11), 1977

— describes a non-blocking buffer

— limitations on number of concurrent writers
Practical with hardware support

— Odd history: lots of user-level music software uses lock-
free data structures

L31 Lockfree

10

General Approach to Lock-Free
Algorithms

Designing generalized lock-free algorithms is hard

Design lock-free data structures instead
- Buffer, list, stack, queue, map, deque, snapshot
Often implemented in terms of simpler primitives

—- e.g. ‘Multi-word Compare and Set’ (MCAS, CAS2, CASN)

— Cannot implement lock-free algorithms in terms of lock-
based data structures

- What’s going to be one of the scarier underlying lock-
free, thread-safe primitive?

. Hint: you usually need this for lists and stacks...

L31 Lockfree

11

Simple Lock-Free Example

. Lock-free stack (aka LIFO queue)
. With integers! (wow...)

. Loosely adapted from example by Jean Gressmann

— Basically ‘uglied up’ (C++to C)

L31 Lockfree

12

Lock-free Stack Structures

class Node {
Node * next;
INt data;
};
// stable “head of list’, not an real Node

Node * head;

Not great style, just happens to fit on a slide

Better to not gratuitously alias ‘whole data structure’ and ‘data
structure element’ classes/structures, IMO

L31 Lockfree

13

Lock-free Stack Push

void push(int t) {
Node* node = new Node(t);
do {
node->next = head,;

+ while (lcas(&head, node, node->next));

L31 Lockfree

14

Lock-Free Stack Pop

bool pop(int& t) {
Node* current = head;
while(current) {
1T(cas(&head, current->next, current)) {
t = current->data; // problem?
return true;

}

current = head;
}
return false;

¥

L31 Lockfree

15

Lock-free Stack: ABA problem

‘ABA problem’

L31 Lockfree

Thread 1 looks at some shared variable, finds that it is ‘A’

Thread 1 calculates some interesting thing based on the
fact that the variable is ‘A’

Thread 2 executes, changes variable to B

(if Thread 1 wakes up now and tries to compare-and-set,
all is well — compare and set fails and Thread 1 retries)

Instead, Thread 2 changes variable back to A!
OK if the variable is just a value, but...

16

Lock-free Stack: ABA problem

. In our example, variable in question is the stack head
— It’s a pointer, not a plain value!

Thread 1: pop(Q) Thread 2:
read A from head

store A.next “somewhere’ \

pop()
pops A, discards 1t

First element becomes B

memory manager recycles
“A” 1Into new variable

Pop(): pops B
cas With A suceeds @—===Push(head, A)

L31 Lockfree

17

ABA problem notes

. Work-arounds

- Keep a ‘update count’ (needs ‘doubleword CAS’)
-~ Don’t recycle the memory ‘too soon’

. Theoretically not a problem for LL/SC-based
approaches

—- ‘ldeal’ semantics of Load-linked/Store-conditional don’t
suffer from this problem

- No ‘ideal’ implementation of load-linked/store-conditional
exists (so all new problems instead of ABA)

. Spurious failures

. Limited or no access to other shared variables between
LL/SC pairs

L31 Lockfree

18

Lock-Free Stack Caveats

. This is not an especially wonderful example

— Could implement with a single mutex and expose only
push() and pop()

— Overhead of a single lock is not prohibitive
Still illustrates some important ideas

— No overhead

— Common lock-free technique: atomically switching
pointers

-~ No API possible to ‘hold lock’
— lllustrates ABA problem

L31 Lockfree

19

Lock-free Linked Lists

Better example: lock-free linked lists
Potentially a long traversal

Unpleasant to lock list during whole traversal
High overhead to festoon entire list with locks

Readers-writers locks only solve part of the problem

— P2 demonstrated all the difficulties with rwlocks...

L31 Lockfree

20

Lock-free Linked Lists

. Example operation: append
. Search for the right spot in the list
. Append using same CAS pointer trick

Al Bl ¢ |

4] v*(%_‘l—%CI |
CASA.next\
D

\

L31 Lockfree

Lock-free Linked Lists: Deletion

. Problem

-~ A thread deleting of B requires an atomic action on
node’s predecessor

-~ Suppose another thread tries to insert E after B
(concurrently)

- B.next -> E

- B no longer on list, E ‘somewhere’

CAS A.next

L31 Lockfree

22

L-F Linked Lists: Deletion Solutions

. A myriad of solutions, for example:

Harris, “A pragmatic implementation of non-blocking

linked-lists”, 2001 (15" International Symposium on
Distributed Computing)

- Place a ‘mark’ in the next pointer of the soon-to-be-
deleted node

. Easy on aligned architectures (free couple of low-order bits
INn most pointers)

— Always falil if we try to CAS this (doesn’t look like a real
pointer)

— If we detect this problem, restart

. Have to go back to the start of the list (we've ‘lost our place’)

L31 Lockfree

23

Lock-free OS Examples
. ACENIC Gigabit Ethernet driver

— Circular receive buffers with no requirement for spin-lock

. Various schemes proposed for Linux lock-free list
traversal

- “Read-copy-update” (RCU)in 2.5 kernel
- Yet Another type of Lock-free programming

- Summary

. To modify a data structure, put a copy in place

. Wait until it’'s known all threads have given up all of the
locks that they held (easy in non-preemptive kernel)

. Then, delete the original
. Requires memory barriers but no CAS or LL/SC.

L31 Lockfree

24

Lock-Free Memory Allocation

Michael (PLDI 2004), “ Scalable Lock-Free Dynamic
Memory Allocation”

. Thread-safe malloc() and free() with no locks

Claim:

- Near-perfect scalability with added processors under a
range of contention levels

- Lower latency than other highly tuned malloc
Implementations (even with low contention)

L31 Lockfree

25

Higher-Level Concepts

. Difficulties with lock-free programming

- Have to make sure that everyone behaves

. True of mutexes too; C/C++ can’t force you to acquire the
right mutex for a given structure

. Although they can try
-~ Hard to generalize to arbitrary sets of complex operations

. Object-based Software Transactional Memory
— Uses object-based programming
- Uses underlying lock-free data-structures
— Group operations and commit/fail them atomically
— Not really a OS-level concept (yet?)

L31 Lockfree

26

Lock-Free Warnings

Not a cure for contention

— It's still possible to have too many threads competing for
a lock free data structure

— Starvation is still a possibility

Requires the same hardware support as mutexes do
Not a magic bullet
Requires:

— A fairly simple problem (e.g. basic data structure), or
-~ Roll your own lock-free algorithm (fun!)

L31 Lockfree

27

Wait-Freedom

Don’t confuse this!

. Wait-Free definition: Each operation completes in a
finite number of steps

. Wait-free implies lock-free
Lock-free algorithms does not imply wait-free

- Note while loops in our lock-free algorithms...

. Wait-free synchronization much harder

- Impossible in many cases
- Usually specifiable only given a fixed number of threads

Generally appear only in ‘hard’ real time systems

L31 Lockfree

28

Conclusion

Lock-free programming can produce good performance

Difficult to get right
- Performance and correctness (ABA problem)

. Well-established, tested, tuned implementations of
common data structures are available

Good starting points

- Google: “lock-free programming”

— http://www.audiomulch.com/~rossb/code/lockfree/ is a
good summary

L31 Lockfree 29

	Lock-Free Programming
	Desynchronization
	Synchronization
	Outline
	Problems with Locking
	Problems with Locking 2
	Problems with Locking 3
	Problems with Locking 4
	Problems with Locking 5
	Lock-free Programming
	General Approach to Lock-Free Algorithms
	Simple Lock-Free Example
	Lock-free Stack Structures
	Lock-free Stack Push
	Lock-Free Stack Pop
	Lock-free Stack: ABA problem
	Lock-free Stack: ABA problem
	ABA problem notes
	Lock-Free Stack Caveats
	Lock-free Linked Lists
	Lock-free Linked Lists
	Lock-free Linked Lists: Deletion
	L-F Linked Lists: Deletion Solutions
	Lock-free OS Examples
	Lock-Free Memory Allocation
	Higher-Level Concepts
	Lock-Free Warnings
	Wait-Freedom
	Conclusion

