Computer Science 15-410: Oﬁ)erating Systems
Mid-Term Exam, Fall 2003

. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

. Be sure to put your name and Andrew ID below and also put your Andrew ID at the top of
each following page.

. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

. You must complete the exam by the end of the class period.

. Answer all questions. The weight of each question is indicated on the exam. Weights of
question parts are estimates which may be revised during the grading process and are for
your guidance only.

. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

. Please don’t ask us questions of the form “If I answered like this, would it be ok?” or “Are
you looking for ...7”

Andrew
Username
Full
Name
Question | Max Points Grader
1. 10
2. 10
3. 10
4 20

100

Andrew ID:

1. |10 points | Give a brief definition of ‘ea?ch of the following term‘s as ‘they apply to this course.
You may add a second sentence providing an example or a clarification.

(a) Register

(b) Stack

(c) Program counter

Andrew ID:

(d) System call

(e) Preemption

Andrew ID:

2. What will happen if the following code is executed in kernel mode?

void foo(void)
{
while (1)
(void) malloc(1);

If you feel that multiple scenarios are possible, please pick one and focus on its details. You may
wish to break your answer into several parts, such as “At first, ...”, “After some time...” and/or
“Eventually...”.

Andrew ID:

Andrew ID:

4. 120 points| Condition-variable implementation

Imagine your company ships arcade-style (coin-operated) video games which run your proprietary
operating system kernel, library code, and applications. Your boss tells you that too much time
is being spent in cond_wait(). Furthermore, it has been determined that the slowdown is due to a
malloc() call and that they want to remove the necessity for a call to malloc() to obtain a queue
entry. You suggest bounding the number of threads waiting on a condition variable and using an
array-based queue, but your boss claims no reasonable bound exists. Instead, you are asked to
investigate whether the system-call interface can be changed to turn the queueing job over to the

kernel.

The system call interface you begin with is:

e int deschedule(int *reject) - Examines the integer pointed to by reject. If the

integer is non-zero, the call returns immediately with return value zero. If the integer
pointed to by reject is zero, then the calling process will be suspended (not run by the
scheduler) until some other process makes a call to make_runnable() on the process that
called deschedule(). An integer error code less than zero is returned if reject is not a
valid pointer. This system call is atomic with respect to make_runnable(): the process of
examining reject and suspending the process will not be interleaved with any execution
of make_runnable() by another process.

int make runnable(int pid) - Makes the deschedule()d process with process 1D
pid runnable by the scheduler. On success, zero is returned. If pid is not the process ID
of a process suspended due to having called deschedule(), then an integer error code less
than zero is returned.

Briefly and clearly sketch out your new deschedule() and make_runnable()
system calls. You may add, delete, or modify the existing parameters. Be sure to choose
good names and briefl descriptions for your new parameters. Make sure your proposed
changes do not dramatically increase the cost (time or memory) of these system calls.

Andrew ID:

(b) Show how cond_wait() and cond_signal() would use your modified system call
interface. Remember that the goal is for a condition variable to be a small constant size
with no variable-length memory use.

(c) Briefly explain why it is that your system call changes will not require the kernel

to allocate more memory than it plausibly was before (in particular, we are not trying to
move the malloc() into the kernel!).

