Project 3: Writing a Kernel From Scratch
15-410 Operating Systems
February 20, 2004

Contents
1 Introduction 4
1.1 OVEIVIEW . . . o e e e e
1.2 Goals e
1.3 Technology Disclaimer 4
1.4 ImportantDates e 5
1.5 Groups. o o e e
1.6 Grading
1.7 Interactions between Project 3and Project4 6
1.8 Hand-in e
2 Hardware Primitives 6
2.1 PivilegeLevels 7
2.2 Segmentation e e e e 7
2.3 Special Registers e 7
2.3.1 The Segment Selector Registers 7
2.3.2 TheEFLAGSRegister
2.3.3 ControlRegisters 3
2.3.4 TheKernel Stack Pointer 8
235 Cinterface
24 Paging
2.5 The Layoutof PhysicalMemory 10
3 The Boot Process 11
4 Device Drivers and Interrupt Handlers 11
4.1 Interrupts, Faults, and Exceptions e 11
4.1.1 HardwarelInterrupts 11
4.1.2 SoftwarelInterrupts 12
4.1.3 Faultsand Exceptions 12
4.1.4 InterruptHandlerFlavors 12
415 Writing an InterruptHandler Lo L. 13
4.1.6 Interrupts and Preemption 13
4.2 Device Drivers e e 14

10

4.2.1 Floating-PointUnit

Context Switching and Scheduling

5.1 ContextSwitching e
5.2 Scheduling e
5.3 Scheduling, Sleeping, and Synchronization

System Calls

6.1 The System CallInterface

6.2 Validation
6.2.1 TheSystemCalls

Building and Loading User Programs
7.1 BuildingUser Programs e e
7.2 LoadingUserPrograms i e e e

The Programming Environment

8.1 Kernel Programming e
8.1.1 ASimpleClLibrary.
8.1.2 Processor Utility Functions
8.1.3 Makefile

8.2 UserProgramming i i i i e e

Hints on Implementing a Kernel

9.1 CodeOrganization e
9.1.1 Encapsulation.
9.1.2 Methodtables.
9.1.3 Embedded TraversalFields
9.1.4 ListTraversalMacros
9.1.5 AccessingUserMemory

9.2 Task/Thread Initialization ca.....

9.3 Thread EXit e

9.4 Kernellnitialization e

Debugging

10.1 RequestsforHelp
10.2 Debugging Strategy e
10.3 Kernel Debugging Tools e
10.4 UserTask Debugging

. 16

11 Checkpoints 27

11.1 CheckpointOne e e 28
11.2 Checkpoint TWO 28
11.3 CheckpointThree e e 29
11.4 Week Four 9 2
115 Week Five o 92
12 Strategy Suggestions 29
13 Plan of Attack 30

1 Introduction

This document will serve as a guide in completing the 15-4d&l project. The goal of this
document is to supply enough information to complete thgeptavithout getting bogged down
in implementation details. Information contained in leetnotes, or in the Intel documentation
will be repeated here only sparingly, and these sourcesoftéh be referenced, so keep them
handy. Good luck!

1.1 Overview

This project will require the design and implementation djrix-like kernel. The 410 kernel
will support multiple virtual memory address spaces viaipggpreemptive multitasking, and a
small set of important system calls. Also, the kernel wilbgly device drivers for the keyboard,
the console, and the timer.

1.2 Goals

Acquiring a deep understanding of the operation of a Urkg-kernel through the design
and implementation of one.

Gaining experience reading technical specifications sa¢healntel documentation.

Debugging kernel code. Virtual memory, interrupts, andctwrency concerns add
complexity to the debugging process.

Working with a partner. Learning how to program as a teamr (Paigramming, division
of labor, etc.). Using source control.

1.3 Technology Disclaimer

Because of the availability, low cost, and widespread ugb@&86 architecture, it was chosen
as the platform for this sequence of projects. As its creatoel Corporation has provided much
of the documentation used in the development of these fsojéa its literature Intel uses and
defines terms like interrupt, fault, etc.. Ontop of this tBé architecture will be the only platform
used in these projects.

The goal of this project set is certainly not to teach thesgiwrasies of the x86 architecture
(or Intel's documentation). That said, it will be necessarpecome accustomed to the x86 way
of doing things, and the Intel nomenclature, for the purpadeompleting this project set. Just
keep in mind that the x86 way of doing things is not the only wagloing things. It is the price
to be paid for learning the principles of operating systemsageal world system instead of a
simulated architecture.

1.4 Important Dates
e Thursday, February 20th: Project 3 begins.
e Wednesday, February 25th: Mid-term examination.
e Wednesday, March 3rd: Checkpoint 1 due (standard turneoquture).
e Friday, March 5th: Campus seems strangely empty and silent.
e Monday, March 15th: Once again the whirring sound of simans lose heard.

e Monday, March 22nd: Checkpoint 2 due (we will probably harntiis via 5-minute mini-
interviews).

e Friday, April 9th: Project 3 due.

1.5 Groups

The kernel project is a group assignment. You should alrdedin a group of two from the
previous project. If you are not in a group, or you are havitigepgroup difficulties, send email
to staff-410@cs.cmu.edu.

In order for you to do well in this class, it will be important f or you to read and
understand your partner’'s code. We strongly suggest that yo schedule time for reading
and discussing each other’s code at least twice weekly.

1.6 Grading

The primary criteria for grading are correctness, perforceadesign, and style.

A correct kernel implements the provided specification.r€cness also includes robustness.
A robust kernel does not crash (no matter what instructioeggecuted by user code), handles
interesting corner cases correctly, and recovers grdgdfam errors.

For the purposes of this class, performance refers mairyptopreemptible your kernel is
(see Section 4.1.6). Also, you should avoid standard fstfalated to putting threads to sleep
(see Section 5.3). We may fuss about code which takeshlonger than it needs to. For example,
if an easyO(1) algorithm exists, don’t use an O(n) algorithm whichuiegs the same amount of
code-this will typically indicate carelessness. On thepttand, we araotrequiring you to use
splay trees or even hash tables where a linked list is gelyuap@ropriate.

A well designed kernel is organized in an intuitive and giinélorward way. Functionality is
separated between different source files. Global variadnesised when appropriate (they are
more appropriate in OS kernels than in most programs), kitbrexcess (basically, consider the
correct scope). Appropriate data structures are used wéesated. When practical, data structure
implementations are hidden behind an appropriate interfsee Section 9.1.1 below).

A kernel with good style is readable. Some noted deviatioos fwhat may be generally
considered to be good style will be penalized. Also, poodsnmented, hard-to-read code will

5

be penalized, as will a project that does not follow the mibed build process. Please note that it
is the considered opinion of the course staff that inlineaddy code s)), like preprocessor
macros, has enough defects that its use must always be segdayr a conscious argument.
For example, once you leave CMU you will probably write codeickh must run on multiple
hardware platforms. This requirement plus inline asserfddiguage immediately results in an
#i f def explosion. Also, unless you use the “long form’asin{) , which correctly declares to the
compiler the C-language effects of your assembly code, avd yourself open to the substantial
risk that a different compiler version, different compitett flags, or even minor changes to your
C code may have disastrous interference effects. It is dlatasys better to make a procedure
call to assembly code in.&file.

Your score will be based on a mixture of test suite results@uk comments made by a
member of the course staff. In addition, we intend to schedB80-minute interview/de-briefing
session with each group.

1.7 Interactions between Project 3 and Project 4

It is likely that groups will not be permitted to do Project Aless they complete Project 3
satisfactorily. Detailed go/no-go criteria will be madexdgable to you near the end of Project 3,
but your mental model should be that you will need to pass 80%test suite which we will
provide you with.

Also, Project 4 will probably center on enhancing your Peofekernel. This means you will
probably need to revise or re-architect some part of yowtswl to Project 3. It is probably wise
to plan ahead for this by writing clean, modular code which wall be able to understand after
you turnitin.

1.8 Hand-in

The hand-in directories will be created as the due date n&éoge specific instructions will be
provided at that time. Subject to later instructions, plamand in all source files, header files,
and Makefiles that you write. Plan to keep to yourself diskgméles, editor-generated backup
files, log files, etc.

When handed in, your kernel must be runnable! This means that imust upon being
booted, start runningdl e, i nit, andshel | without user intervention. In particular, it must
not drop into the simics debugger. Also, your kernel should restegate reams ofprint f ()
debugging messages while running. Ideally you should adjgssetting of your trace facility
(see Section 9.1) so that it generatesnessages, but in any case the normal loading, execution,
and exiting of a program should not generate more than 26 bhieer nel . | og output.

2 Hardware Primitives

2.1 Pivilege Levels

The x86 architecture supports four pivilege levels, PL@dgh PL3. Lower privilege numbers
indicate greater privilege. The kernel will run at PLO. Usede will run at PL3.

2.2 Segmentation

A segment is simply a region of the address space. Two nopabfeerties can be associated with
a segment: the pivilege level, and whether the segmentiogntade, stack, or data. Segments
can be defined to span the entire address space.

The 410 kernel will use segmentation as little as possiblee X86 architecture requires
some use of segmentation, however. Installing interruptlifeas, and managing context switch
requires some understanding of segmentation.

In the 410 kernel, there will be four segments. These foumsstys will each span the entire
address space. Two of them will require that the privilegellbe set to PLO to be accessed, and
two will require that the privilege level be set to PL3 or lowte be accessed. For each pair of
segments, one will be code and one will be data.

2.3 Special Registers

This project requires an understanding of some of the x86gssnr data structures. This section
will cover some important structures that the kernel mustimaate in order to function properly.

2.3.1 The Segment Selector Registers

There are six segment selector registéss., 9ss, %ls, %es, % s, and%gs. A segment selector is
really an index into one of two processor data structurdead#he Global Descriptor Table (GDT)
and Local Descriptor Table (LDT). These tables are wheresdtgnents are actually defined.
The provided startup code sets up segment descriptors iBEAg but it is the resposibility of
the kernel to have the correct values in the segment selegmters on entering and leaving the
kernel. The code segment selector for the currently runttingad is stored if€s. The stack
segment selector for the currently running thread is staré@s. It is possible to specify up
to four data segment selectors. They @tle through%js. The code segment selector is used
to access instructions. The stack segment selector is nstddk related operations (i.€L)SH,
POP, etc.). The data segment selectors are used in all otheatopes that access memory.

On entering theker nel _mai n() function, the kernel and user segments have already been
installed into the GDT. When a user thread is started, uset tode, stack, and data segment
selectors need to be specified and loaded into the segment@eiegisters. When a user thread
takes an interrupt, the code and stack segment selectstaegwill be saved automatically. The
data segment selector registers and the general purpasteregvill not be saved automatically,
however.

For more information on the GDT and segmentation pleasewethe relevant lecture notes
and consult your textbook, sections 2.1, 2.4, and 3.2nbEl - sys. pdf , and the segmentation
handout on the course web site.

2.3.2 The EFLAGS Register

The EFLAGS register controls some important processor state. It wal riiecessary to
provide the correct value for thEFLAGS register when starting the first user thread, so
it is important to understand its format. TH&LAGS register is discussed in section 2.3
of intel-sys.pdf. 410kernel/lib/inc/x86/eflags.h contains useful definitions. The
bootstrap process seESLAGS to an appropriate value, available to you via tfe¢ _ef | ags()
macro from410kernel /1i b/inc/ x86/ proc_reg. h, for your kernel execution. Before entering
user mode you will need to arrange for bit 1 (*reserved”) talband, after studying what they
do, should arrange for tHe= and| OPL_KERNEL bits to be set. The first method you think of for
doing this may not be the right method.

2.3.3 Control Registers

e Control Register Zero%r 0): This control register contains the most powerful system
flags. The 410 kernel will only be concerned with bit 31, whaivates paging when set,
and deactivates it when unset. Paging is discussed belowmobDmodify the state of any
of the other bits.

e Control Register On€fr 1): This control register is reserved and should not be todiche

e Control Register Two%er 2): When there is a page faubgr 2 will contain the address
that caused the fault. This value will be needed by the pagielfandler.

e Control Register Three%r 3): This control register is sometimes known as the Page
Directory Base Register (PDBR). It holds the address of threeat page directory in its
top 20 bits. Bits 3 and 4 control some aspects of caching aodldiboth be unset. The
%r 3 register will need to be updated when switching addressespatriting to théder 3
register invalidates entries for all pages in the TLB notkedrglobal.

e Control Register Fourdgr 4): This control register contains a number of extension flags
that can be safely ignored by the 410 kernel. Bit 7 is the PdgbabEnable (PGE) flag.
This flag should be set for reasons discussed below.

2.3.4 The Kernel Stack Pointer

In the x86 architecture, the stacks for user level code aniekéevel code are separate. When
an interrupt occurs that transitions the current privillyel of the processor to kernel mode, the
stack pointer is set to the top of the kernel stack. A small@mof context information is then
pushed onto the stack to allow the previously running thteadsume once the interrupt handler
has finished.

The value of the stack pointer when we enter kernel mode isetfy the currently running
task. Tasks are a hardware “process” mechanism providetidox86 architecture. The 410
kernel will not use tasks. It is faster to manipulate the psscabstraction in software. It is
necessary, however, to define at least one task. This takes ipl the bootstrapping code, before
execution of the&ker nel _mai n() function begins. The provided functiaet _esp0(), defined
in 410ker nel /'1i b/ x86/ seg. ¢, will specify the beginning value for the kernel stack peirthe
next time a user-to-kernel transition occurs.

2.3.5 Cinterface

There are inline assembly macros defined18kernel /1i b/ i nc/ x86/ proc.reg. h, that can
be used to read and write many of the processor’s registers.

2.4 Paging

The x86 architecture uses a two-level paging scheme withKibobyte pages. Itis also possible
to use larger page sizes. The top level of the paging streitswralled the page directory, while
the second level consists of objects called page tables. farheat of the entries in the page
directory and page tables are very similar, however, thelidgihave slightly different meaning.
Here is the format of both a page directory entry and a pade &attry.

Entries in both tables use the top twenty bits to specify airegs. A page directory entry
specifies the virtual memory address of a page table in théatepty bits. A page table entry
specifies the number of a physical frame in the top twenty Bisth page tables and physical
frames must be page aligned. An object is page aligned if dit@im twelve bits of the lowest
address of the object are zero.

The bottom twelve bits in a page directory or page table earyflags.

e Bit O: This is the present flag. It has the same meaning in batfe plirectories and page
tables. If the flag is unset, then an attempt to read, writegxecute data stored at an
address within that page (or a page that would be referencttenot present page table)
will cause a page fault to be generated. On installing a ney& fable into a page directory,
or framing a virtual page, the preset bit should be set.

e Bit 1: This is the read/write flag. If the flag is set, then thg@#s writable. If the flag is
unset then the page is read-only, and attempts to write auise a page fault. This flag has
different meanings in page table and page directory entBeg the table on page 136 of
i ntel -sys. pdf for details.

e Bit 2: This is the user/supervisor flag. If the flag is set, thi®d page is user accessible.
This flag has different meanings in page table and page dmeentries. See the table on
page 136 of nt el - sys. pdf for details.

e Bit 3: This is the page-level write through flag. If it is setjt®-through caching is enabled
for that page or page table, otherwise write-back cachingeésl. This flag should be left
unset.

e Bit 4: This is the page-level disable caching flag. If the flaget, then caching of the
associated page or page table is disabled. This flag shougdthmset.

e Bit 5: This is the accessed flag. It is set by the hardware wherpage pointed to by a
page table entry is accessed. The accessed bit is set in aipag@ry entry when any of
the pages in the page table it references are accessed.athisdly be ignored by the 410
kernel.

e Bit 6: This is the dirty flag. It is only valid in page table eles. This flag is set by the
hardware when the page referenced by the page table entritiensto. This flag can be
used to implement demand paging. However, this flag may beégihby the 410 kernel.

e Bit 7: This is the page size flag in a page directory entry, &iedpiage attribute index flag
in a page table entry. Because the 410 kernel uses four kédqiages all of the same type,
both of these flags should be unset.

e Bit 8: This is the global flag in a page table entry. This flag hasmeaning in a page
directory entry. If the global flag is set in a page table erttrgn the virtual-to-physical
mapping will not be flushed from the TLB automatically whentimg %r 3. This flag
should be used to prevent the kernel mappings from beingdtush context switches. To
use this bit, the page global enable flag@m 4 must be set.

e Bits 9, 10, 11: These bits are left available for use by saftwaTlhey can be used to
implement demand paging. The 410 kernel may ignore these bit

2.5 The Layout of Physical Memory

Although there are many ways to partition physical memdrwy 410 kernel will use the following
model. The bottom 16MB of physical memory (from address @x@ddress Oxffffff, i.e., just
under USER.MEM.START as defined byt10kernel /| ib/inc/ x86/ seg. h), is reserved for the
kernel. This kernel memory should appear as the bottom 16M&aoch task’s virtual address
space (that is, the virtual-to-physical mapping will be identity function for the first 16
megabytes; this is known as “direct mapping”, or “V=R” in B\ mainframe world).

Note that user code should not be able to read from or writetoed memory, even though it
is resident at the bottom of each user task’s address spacthdr words, from the point of view
of user code, memory between 0 and Oxffffff should be jushaalid as any other memory not
part of the text, data, bss, automatic stackjew_pages() -allocated regions.

The rest of physical memory, i.e. from
0x1000000 up, should be used for frames.410kernel /| i b/ i nc/ x86/ seg. h is a prototype
for a functioni nt machi ne_phys_franmes(voi d), provided by410kernel /|i b/ x86/ seg. c,
which will return to you the number ¢#AGE_SI ZE-sized frames supported by the simics virtual
machine you will be running onPAGE_SI ZE and the appropriateAGE_SHI FT are located in
410kernel /11 b/inc/ page. h). This frame count will include both kernel frames and user
memory frames.

10

Please note that the memory-allocation functions disclsstow (e.g.nal | oc()) manage
only kernel virtual pages. You are responsible for defining anglémenting an allocator
appropriate for the task of managing free physical frames.

3 The Boot Process

The boot process is somewhat complicated, and it is not sagego fully understand
it in order to complete this project. To learn more about tlwetbprocess, please read
about the GRUB boot loadeht(t p: / / ww. gnu. or g/ sof t ware/ grub/). This is the boot
loader that will be used to load the 410 kernel. The 410 kewwhplies with the
Multiboot specification as defined attp://ww. ntc. ac. uk/ grub/ nul tiboot toc. htn .
After the boot loader finishes loading the kernel into memadtyinvokes the function
mul ti boot _mai n() in 410kernel /|ib/multiboot/basenultiboot_main.c. The support
code in 410kernel /1ib/ nmul ti boot ensures that the 410 kernel follows the Multiboot
specification, initializes processor data structures wd#fault values, and calls the 410
kernel _mai n() function.

A memory map of the system is stored in a list of range desusphat is pointed to by the
information handed to the kernel by the multiboot initialibn functions. The relevant structures
are defined ird10kernel /1ib/inc/nmultiboot.h. This information should be used when
setting up the list of free physical frames, and in deterngrthe amount of memory availible
in the system.

4 Device Drivers and Interrupt Handlers

Your work on Project 1 provided you with most of the interrinaindling knowledge necessary
for the kernel project. In this section we will briefly coveays in which Project 3 demands more
or different treatment.

4.1 Interrupts, Faults, and Exceptions

The Interrupt Descriptor Table (IDT) contains entries fardware device interrupts (covered
in Project 1), software interrupts (which you invoked in jéod 2), and exception handlers.
Exceptions are conditions in the processor which are ysualhtended and must be addressed.
Page faults, divide-by-zero, and segmentation faults latgpes of exceptions.

4.1.1 Hardware Interrupts

You will support the same hardware devices you did in Prdjetttough your device drivers will
be somewhat more complicated.

11

4.1.2 Software Interrupts

Hardware interrupts are not the only type of interrupt. Paags can issue software interrupts as
well. These interrupts are often used as a way to transfeuéra to the kernel in a controlled
manner, for example during a system call. To perform a seéwderrupt a user application will
execute a special instruction\NT n, which will cause the processor to execute ittte handler

in the IDT.

In this project, software interrupts will always cause aitege level change, and you will
need to understand what the CPU hardware places on the sidok @ privilege level change
(see page 152—-153 ot el - sys. pdf).

4.1.3 Faults and Exceptions

Please read section 5.3iaft el - sys. pdf on Exception Classifications. Note that entries exist
in the IDT for faults and exceptions. The 410 kernel shoulddha the following exceptions:
Division Error, Device Not Present, Invalid Opcode, Aligamt Check, General Protection Fault,
and Page Fault. On each of these exceptions, the kerneldstepdrt the virtual address of the
instruction that caused the exception, along with any otbvant information (i.e., for page
faults which will kill a thread, the program counter, addr@ghich generated the fault and the
reason the memory access was invalid).

If the kernel decides to kill a thread due to an exceptions thust be done cleanly. In
particular, any kernel resources related to the thread bris¢claimed. In general, your kernel
should treat the exception as if the thread had invaked (- 2) , including, if necessary, the
standard mechanisms related to task exit.

4.1.4 Interrupt Handler Flavors

As mentioned previously, an x86 processor uses the IDT tdli@dddress of the proper interrupt
handler when an interrupt is issued. To install interrugtiltf and exception handlers, entries
must be installed in the IDT.

An IDT entry can be one of three different types: a task gateingerrupt gate, or a trap
gate. Task gates make use of the processor’s hardware téskisg functionality, and so are
inappropriate for the 410 kernel. Interrupt gates and traegdiffer in that an interrupt gate
causes interrupts to be disabled before the handler begewuon. You should think about
which kind of gate is appropriate for system calls, and albicivkind is appropriate for your
hardware device drivers. Some reasonable designs requimgtare of interrupt gates and trap
gates. One question which might guide your thinking is, “Whappens if a timer interrupt
interrupts my keyboard interrupt handler?” It is probablycd idea for your documentation to
explain which gate flavors you used for what, and why.

The format of the trap gate is on page 151 affel - sys. pdf . Note that regardless of the type
of the gate, the descriptor is 64 bits long. To find out the laakiress of the IDT, the instruction
SIDT can be used. A C wrapper around this instruction is défimethe support code in
410kernel /1'i b/ x86/ seg. c. The prototype can be found #10kernel / 1i b/ i nc/ x86/ seg. h.

12

The purpose of some of the fields of a trap gate are not obvidhe.DPL is the privilege
level required to execute the handler. The offset is theuairaddress of the handler. The
Segment Selector should be set to the segment selectorddariet code segment. This is
KERNEL _CS_SEGSEL defined ind10kernel / 1'i b/ i nc/ x86/ seg. h.

4.1.5 Writing an Interrupt Handler

As mentioned above, when the processor receives an interiuges the IDT to start executing
the interrupt handler. Before the interrupt handler exesuhowever, the processor pushes
some information onto the stack so that it can resume itsiguevtask when the handler has
completed. The exact contents and order of this informasgresented on pages 152-153 of
i ntel-sys. pdf.

You will probably wish to save (& later restore) additionafarmation on the stack, such
as general-purpose registe®U$HA and POPA may be useful; see pages 624 and 576 of
intel-isr.pdf))and segment registers.

4.1.6 Interrupts and Preemption

The 410 kernel has a number of critical sections. It may bessary to disable interrupts to
protect these critical sections. Interrupts can be disibjethe macrali sabl e_i nt errupt s()
defined in410kernel / 1'i b/ i nc/ x86/ proc_reg. h, or by theCLI instruction. Interrupts can be
enabled by the macrnabl e_i nt errupt s() defined in the same file, or by ti8F1 instruction.

The simulator is programmed to log how long interrupts aablied. Note that the C
macros referenced above issue the Simics magic instructiemr convenience, macros have
also been written to replace thH&l and STl instructions. These macros are defined in
410kernel /1'ib/inc/x86/cli sti.asm h. This file mustbe#i ncl uded in each assembly file
in which theCLI or STl instructions appear.

The log filei nt's. | og is stored whersl Mhal t () is called. This function should be used to
implement thehal t () system call. If interrupts are disabled for an especialhgltime, a note
of it is made in the log file.

Your 410 kernel should be as preemptible as possible. Theam#hat, ideally, no matter
what code sequence is running, whether in kernel mode omagde, when an interrupt arrives
it can be handled and can cause an immediate context swapipibpriate. In other words, if an
interrupt signals the completion of an event that some thigavaiting for, it should be possible
for your kernel to suspend the interrupted thread and resheneaiting thread so that returning
from the interrupt activates the waiting thread rather teninterrupted thread.

To do this, you will need to strive to arrange that as much waskpossible is performed
within the context of a single thread’s kernel executioniemment without dependencies on
other threads. When race conditions with other processesravoidable, try to structure your
code so that task/thread switching is disabled for multgblert periods of time rather than for
one long period of time.

A portion of your grade will depend on how preemptible yourmiad is.

13

4.2 Device Drivers

Through the system call interface you will expose the fuordlity provided by a timer driver, a
keyboard driver, and a console driver oddly similar to thyse created for Project 1. Since you
and your partner both implemented these drivers, this geswou with an excellent opportunity
to read, review, and discuss each other’s code before hagitmwrite new code together. Please
take advantage of this opportunity!

4.2.1 Floating-Point Unit

Your processor comes equipped with a floating-point cogssor capable of amazing feats of
approximation at high speed. However, for historical reasthe x86 floating-point hardware is
baroque. We will not require you to manage the user-visitatef the floating-point unit.

The bootstrapping code we provide will initialize the flo@fipoint system so that any attempt
to execute floating-point instructions will result in a “de® not present” exception (see the Intel
documentation for the exception number). You should do $limg reasonable if this occurs,
i.e., kill the offending user thread (optional challengepjgort floating-point).

Please note that since the floating-point hardware is nogh®anaged correctlyou should
not use floating-point variables or code in your kernel codaser-space test programs

5 Context Switching and Scheduling

5.1 Context Switching

Context switching is historically a conceptually difficydart of this project. Writing a few
assembly language functions is usually required to achieve

In a context switch, the general purpose registers and sggrakector registers of one thread
are saved, halting its execution, and the general purpossees and segment selector registers
of another thread are loaded, resuming its execution. Alteaddress of the page directory for
the thread being switched to is loaded ifiio 3.

Note that it is possible to context-switch from one threathing in kernel mode to another
thread which is runnable and also in kernel mode. In othedsjocontext switching neither
requires nor forbids a transition from kernel mode to usedeno

We suggest you structure your kernel so that there is onlp@mue of code which implements
context switching. Our suggestion is based on reading stl@enels and observing that multiple
context-switch code paths typically indicate multiple limting partial understandings of context
switch. This often means that each one contains a bug. Assfised in the “Yield” lecture, if
a single function performs a context switch, then the pofrex@cution for every non-runnable
thread is inside that function and the instruction pointeedinot be explicitly saved. We also
suggest that you set things up so there is only “one way baukdospace” (rather than distinct
code paths fofork(), thread_fork(), exec(), and context switch. If you can't manage one
path, you should be able to keep the count down to two.

14

When you are designing your context switch infrastructitrevill probably be helpful to
enumerate the situations in which it might be invoked (hinat just by the timer interrupt
handler).

Before a thread runs for the first time, meaningful contetiaed to be placed on its kernel
stack. A useful tool to set a thread running for the first tisithel RET instruction. It is capable
of changing the code and stack segments, stack pointendtisih pointer, an@&FLAGS register
all in one step. Please see page 1538wkl - sys. pdf for a diagram of what theRET instruction
expects on the stack.

5.2 Scheduling

A simple round robin-scheduler is sufficient for the 410 letriThe running time of the scheduler
should not depend on the number of threads currently in thewsqueues in the kernel. In
particular, there are system calls that alter the order ichvtinreads run. These calls should not
cause the scheduler to run in anything other than constaetcéad time (but see Section 9.1.1,
“Encapsulation” below).

You should avoid a fixed limit on the number of tasks or threddsparticular, if we were
to run your kernel on a machine with more memory, it shouldlide o support more of each.
Also, your kernel should respond gracefully to running duhemory. System calls which would
require more memory to execute should receive error retodes In the other direction, it is
considered legitimate for a Unix kernel to kill a process &ime it is unable to grow its stack
(optional challenge: can you do better than that?).

5.3 Scheduling, Sleeping, and Synchronization

While designing your kernel, you may find yourself temptedetoploy various “tricky”
techniques to avoid actually putting a thread to sleep. Aaghes to avoid:

Saved by the bell Instead of actually putting a thread to sleep, busy-wait thre clock interrupt
arrives and invokes your context-switch code for you

To run or not to run? Construct a deceptive “scheduling queue” containing ndt cimnable
threads but also threads asleep for fixed time periods arddkrblocked indefinitely, thus
requiring the thread scheduler to hunt among decoys fordbasional genuinely runnable
thread.

Yield loop Instead of arranging to be awakened when the world is readydo, repeatedly
“sleep for a while” by putting yourself at the end of the rurege. Please note that, as we
discussed in class, this approaclgismranteedo never sleep the right amount of time (too
short for N-1 iterations and then too long the last time).

Not now, maybe later? Allow kernel code to be interrupted by devices, but forbitlatcontext
switching in kernel mode.

15

Of course, you matemporarilyemploy “quick hacks” during the course of development, but
please be aware that each “trick” on the list above mapsttjirechaving avoided understanding
an important conceptual issue, and this will influence yaadg accordingly.

In general, seek to adhere to these principles:

e A thread should not run in kernel mode when it is hopelesshutd stop running when
it’s time to stop running),

e A sleeping thread should not run before it can do productiegkwand

e A sleeping thread should begin running, or at least be mankedable as soon ast can
once again do productive work.

6 System Calls

6.1 The System Call Interface

The system call interface is the part of the kernel most exgp¢s user code. User code will make
requests of the kernel by issuing a software interrupt usieg NT instruction. Therefore, you
will need to install one or more IDT entries to handle systeftsc

The system call boundary protocol (calling convention) \wé the same for Project 3 as it
was for Project 2. Interrupt numbers are definediib/ i nc/ syscal | _i nt . h.

6.2 Validation

Your kernel must verify all arguments passed to system,catid should return an integer error
code less than zero if any arguments are invalid. The kenaglnotkill a user thread that passes
bad (or inconvenient) arguments to a system call, antisblutely may natrash.

The kernel must verify, using its virtual memory housekagpnformation, that every pointer
is valid before it is used. For example, argumentsxtiec() are passed as a null terminated array
of C-style null terminated strings. Each byte of each strimgst be checked to make sure that
it lies in a valid region of memory. The kernel should alsowrasthat it isn’t “tricked” into
performing illegal memory operations for the user as a tefllad system call arguments.

6.2.1 The System Calls

You will implement the system calls described in tPebbles Kernel Specificatiaocument,
which has been updated as a result of comments receivedydRimiyect 2.

Though this should go without saying, kernels missing systalls are unlikely to meet
with strong approval from the course staff. However, as padur tireless quest to calibrate
the difficulty of the projects, this semester you a required to implementget char () and
task_exit () for Project 3. You will want to think carefully about the i®s1associated with

16

these system calls, however, as there is an excellent clyancgill be asked to implement them
in Project 4.

While implementing eadl i ne(), please try to ensure that you dot context switch to the
invoking thread every time a keyboard interrupt makes a rfeavacter available.

7 Building and Loading User Programs

7.1 Building User Programs

User programs to be run on the 410 kernel should conform téotl@ving requirements. They
should be ELF formatted binaries such that the only sectibatsmust be loaded by the kernel
are the .text, .rodata, .data, and .bss sections (C++ prsgrahich have additional sections
for constructors which run before main() and destructorgkwviun after main(), are unlikely to
work).

Programs may be linked against the 410-provided user-djmaey, andmust notbe linked
against the standard C library provided on the host systdérmay $hould be linked statically, with
the .text section beginning at the lowest address in theadsiness space. The entry point for all
user programs should be theai n() function found ir410user/tests/crtO0.c.

7.2 Loading User Programs

The 410 kernel must read program data from a file, and loaddteeidto a task’s address space.
Due to the absence of a file system, user programs will be tbfrden large arrays compiled into
a “RAM disk” image included in the kernel executable binary.

We have provided you with a utility}10user/ exec2obj , which takes a list of file names
of Pebbles executables and builds a single fikgr _apps. ¢, containing one large character
array per executable. It also contains a table of contemgdimat of which is described in
410kernel /11 b/inc/exec2obj.h. When a program is executed, your loader will extract the
ELF header and various parts of the executable from theastesharacter array and build a
runnable memory image of the program.

Later in the semester, there may be an opportunity to writee ayistem for the 410 kernel.
To facilitate an easy switch froexec2obj to a file system, please use tiet byt es() skeleton
found inkern/ | oader. c: it provides a crude abstraction which can be implementetbprof
eitheruser _apps. c or a real file system.

Support code has also been provide@dénn/ | oader . ¢ to extract the important information
from an ELF-formatted binaryel f _check _header () will verify that a specified file is an ELF
binary, ancel f _| oad_hel per () willfill in the fields of ast ruct se (“simplified ELF”) for you.
Once you have been told the desired memory layout for an éieleLfile, you are responsible for
usingget byt es() to transfer each executable file section to an appropriatglgnized memory
region. You should zero out areas, if any, between the end®fegion and the start of the next.
The bss region should begin immediately after the end ofehd/write data region, and the heap
should begin on a page boundary.

17

Note: the .text and .rodata (read-only data) sections okieeutable must be loaded into
memory which the task’s threads cannot modify.

8 The Programming Environment

8.1 Kernel Programming

The support libraries for the kernel include a simple C lilora list based dynamic memory
allocator, functions for initializing the processor dataistures with default values, and functions
for manipulating processor data structures.

8.1.1 A Simple C Library

This is simply a list of the most common library functionstthee provided. For details on using
these functions please see the appropmatepages. Other functions are provided that are not
listed here. Please see the appropriate header files fdrletinlg of the provided functions.

Some functions typically found in a C I/O library are prowidey | i bst di 0. a. The header
file for these functions iki b/ i nc/ st di o. h.

e int putchar(int c)

e int puts(const char *str)

e int printf(const char *format, ...)

e int sprintf(char *dest, const char *format, ...)

e int snprintf(char *dest, int size, const char *formant, ...)
e int sscanf(const char *str, const char *format, ...)

e void Iprintf kern(const char *format, ...)

Some functions typically found in a C standard library arevpded byl i b/ 1i bstdlib. a.
The header files for these functions, linb/i nc, arestdlib. h, assert.h, mal | oc. h, and
ctype. h.

e int atoi(const char *str)

| ong atol (const char *str)

long strtol (const char *in, const char **out, int base)

unsi gned long strtoul (const char *in, const char **out, int base)

void *nal | oc(sizet size)

18

e void *calloc(sizet nelt, sizet eltsize)

e void *realloc(void *buf, sizet newsize)

e void free(void *buf)

e void smemalign(sizet alignment, sizet size)
e void sfree(void *buf, size_t size)

e void panic(const char *format, ...)

e void assert(int expression)

The functionssnenal i gn() andsfree() manage aligned blocks of memory. That is, if
al i gnment is 8, the block of memory will be aligned on an 8-byte boundarplock of memory
allocated with smemaligmustbe freed withsfree(), which requires thesi ze parameter.
Therefore, you must keep track of the size of the block of mgrgou allocated. This interface
is useful for allocating things like page tables, which mustaligned on a page boundary. By
volunteering to remember the size, you free the storageattio from scattering block headers
or footers throughout memory, which would preclude it froffto@ating consecutive pages.
sfree(void* p, int size) frees a block of memory. This bloakusthave been allocated
by smemal i gn() and it must be of the specified size. Note that these memaryaibn facilities
operateonlyon memory inside the kernel virtual address range. Of cotusetions with similar
names appear in user-space libraries; those functiemsroperate on kernel virtual memory.

Also, note that what we actually provide you with, as in Pcbj@, are non-thread-
safe (non-reentrant) versions of the memory-managemeamitpes (mal | oc() and friends),
with underlined names (e.gJmalloc()). Once your kernel supports preemptive context
switching, you will need to provide thread-safe wrappettires based on whatever locking and
synchronization primitives you design and implement. Bptobably makes sense to get started
with simple “pass-through” wrappers.

Some functions typically found in a C string library are po®d byl i b/ [i bstring. a. The
header file for these functionslisb/ i nc/ string. h.

e int strlen(const char *s)
e char *strcpy(char *dest, char *src)

e char *strncpy(char *dest, char *src, int n)

char *strdup(const char *s)

char *strcat(char *dest, const char *src)

e char *strncat(char *dest, const char *src, int n)

int strcnp(const char *a, const char *b)

19

e int strncnp(const char *a, const char *b, int n)
e void *menmmove(void *to, const void *from unsigned int n)
e void *menset (void *to, int ch, unsigned int n)

e void *menctpy(void *to, const void *from unsigned int n)

8.1.2 Processor Utility Functions

These functions, declared4i0kern/ | i b/ i nc/ x86/ proc_reg. h, access and modify processor
registers and data structures. Descriptions of theseimsctan be found elsewhere in this
document.

e voi d disable.interrupts()

e voi d enabl eiinterrupts()

e void set _cr3(void *)

e voi d set _cr3_nodebug(void *)
e void set _espO(void *)

e voi d *get _esp0()

e void *sidt()

8.1.3 Makefile

The providedvakef i | e takes care of many of the details of compiling and linkingkkenel. It
is important, however, to understand how it works. Once yopiack the Project 3 tarball, you
should readREADME andconf i g. nk and fill them in according to the directions.

It is also important that you pay attention to the directary&ure. In particular, files in
410kern and410user should be treated as read-only. While you might occasipmeded to
modify or instrument library routines for debugging puressany standard (non-“offline”) build
of your kernel will overwrite them due to the update infrasture, and when we grade your
kernel we will use the “supported” versions of those filesceanges you makeill be wiped
out. You can temporarily build without updates by running

make UPDATE METHCD=of fli ne

8.2 User Programming

The same C library is provided for user programs. Howeversole output functions will not
work until thepri nt () system call is implemented. Also, a pseudo-random numbesrgéor is
provided as a user library.

20

9 Hints on Implementing a Kernel

In this section you will find a variety of suggestions and exatons. We certainly do not expect
each kernel to follow every suggestion contained hereitiyu will probably find at least one of
them attractive enough to implement it, at which point weestgyou will judge it to have been a
worthwhile investment of your time.

9.1 Code Organization

e You may wish to invest in the creation of a trace facility. teesd of Iprintf() calls scattered
at random through your code, you may wish to set up an infretstre which allows you to
enable and disable tracing of a whole component at once {leegscheduler) and/or allow
you to adjust a setting to increase or decrease the gratyuéirnessage logging.

e Some eventualities are genuinely fatal in the sense thia thao way to continue operation
of the kernel. If, for example, you happened to notice tha timead had overflowed its
kernel stack onto the kernel stack of another thread, thexddibe no way to recover a
correct execution state for that thread, nor to free up gsueces. In such a situation the
kernel is broken, and your job is no longer to arrange thirkgsrlet urn(- 1) , but instead
to stop execution as fast as possible before wiping out datehveould be used to find and
fix the bug in question. You will need to use your judgementl&ssify situations in to
recoverable ones, which you should detect and recover faochunrecoverable situations
(such as data structure consistency failures), for whiahstoouldnot write half-hearted
sort-of-cleanup code.

These considerations may suggest that you make use dadsext () macro facility
provided by410user/lib/inc/assert.hand410kern/lib/inc/assert.h.

e Avoid common coding mistakes. Be aware that will not warn about possible unwanted
assignments inf , andwhi | e statements. Also, note the difference betwetoo- >bar,
and! (f oo->bar) . Practicing Pair Programming can help avoid these kindsistakes.

9.1.1 Encapsulation

Instead of typing linked-list traversal code 100 times tlgloout your kernel, thus firmly and
eternally committing yourselves to a linear-time datadtrte, you should attempt to encapsulate.
Don't think of a linked list of threads; think of sets or graupf threads: live, runnable, etc.

Likewise, don’'t write a 2,000-line page fault handler. bwd of ignoring the semantic
properties shared by pages within a region, use those pirep#y your advantage. Write smaller
page-fault handlers which encapsulate the knowledge saetw handlsomepage faults. You
will probably find that your code is smaller, cleaner, andexa® debug.

Iwhile it is not rare for a kernel to log messages using impdiitguistic constructs, it rare for this to improve
the kernel's reception with course staff.

21

If you find yourself needing something sort of like a conditi@riable don’t throw away the
modes of thought you learned in Project 2. Instead, use wihatgarned as an inspiration to
design and implement an appropriate similar abstractisidl@your kernel.

Encapsulation can allow you to defer tricky code. Insteadngflementing the “best” data
structure for a given situation, you may temporarily hidewadr-quality data structure behind an
interface designed to accomodate the better data strucuree your kernel is stable, you can
go back and “upgrade” your data structures. While we willgratet a chock-full-of-linked-lists
kernel or a wall-of-small-arrays kernel with cries of jopdadata structure design is an important
part of this exercise, achieving a complete, solid impletagon is critical.

9.1.2 Method tables

You can practice modularity and interface-based design in a lagguwadthout objects. In C this
is typically done via structures containing function-geinfields. Here is a brief pseudo-code
summary of one basic approach (other approaches are valjd to

struct device_ops {

void (*putchar)(void *, char);
int (*getchar)(void *);

b

struct device_ops serial_ops = {
serial _putchar, serial_getchar

b

struct device_ops pipe_ops = {
pi pe_put char, pipe_getchar
b

struct device_object {
struct device_ops *opsp;
void *instance_data;

b

voi d putchar(struct device_object *dp, char c)
{ (dp->opsp- >put char) (dp->i nstance_data, c);
}

}/oi d init(void)

struct device_object *dl, *d2;
dl = new pi pe_object();

22

d2 = new serial _object();

"); |* pipe_putchar(dl->instance data, 'l

put char (d1, °’)
d2 "); I* serial _putchar(d2->instance data, '2')

1
put char ("2
}

x|
; *l

9.1.3 Embedded Traversal Fields

Imagine a component is designed around a linked list. It ne@yrsnatural to re-invent the Li$p
“cons cell”:

struct listitem/{
struct listitem *next;
void *itemitself;

}

The problem with this approach is that you are likely to aalll oc() twice as often as you
should—once for each item, and once for the list-item stméct Sincemal | oc() can be fairly
slow, this is not the best idea, even if you are comfortabkdidg with odd outcomes (what if
you can allocate the list item but not the data item, or theothay around?).

Often a better idea is to embed the traversal structurearthiel data item:

struct itemitself {
struct itemitself *next;
int fieldl;
char field2;

}

This cuts youmal | oc() load in half. Also, once you understand C well enough, it isqilole
to build on this approach so you can write code (or macrosghvhill traverse a list of threads
or a list of devices.

Isn’t this an encapsulation violation? It depends...ifé'gbody knows” that your component
does traversal one way, that is bad. If only your componenf®rted methods know the traversal
rules, this can be a very useful approach.

9.1.4 List Traversal Macros

You may find yourself wishing for a way for a PCB to be on mukigists at the same time
but not relish the thought of writing several essentiallgritical list traversal routines. Other
languages have generic-package facilities, but C doeHmtever, it is possible to employ the
C preprocessor to automatically generate a family of sinfulactions. If you wish to pursue this
approach, you will find a template availablevig_chal | enge/ vari abl e_queue. h.

2or, for you young whippersnappers, ML

23

9.1.5 Accessing User Memory

System calls involve substantial communication of datavbeh user memory and kernel
memory. Of course, these transfers must be carefully dedigm avoid giving user code the
ability to crash the kernel.

You will discover that there are many potential hazardstelad of checking manually for
each hazard every time you read or write some piece of useronyeyou may find it useful
to encapsulate this decision-making in some utility roeginlf you think about how and when
these routines are used, you may find that you can piggybasle thazard checks onto another
operation, resulting in a pleasant package.

9.2 Task/Thread Initialization

e Task/thread IDs - Each thread must have a unique integer thread ID. Sincetagen
allows for over two billion threads to be created before foeing its range, sequential
numbers may simply be assigned to each thread created witthmuying about the
possibility of wrap-around — though real operating systdme/orry about this. The thread
ID must be a small, unique integer, not a pointer. The datetre used to map a thread ID
to its thread control block should not be inefficient in spacéme. This probably means
that a hash table indexed by thread ID should be used to stereapping from thread IDs
to PCBs.

e thread_fork() -Onafork(), anew task ID is assigned, and kernel state is allocated
for the new schedulable entity, which will use the resourdabe invoking thread’s task.
The new thread will have identical contents in all userblesregisters exceptax, which
will contain zero in the new thread and the new thread’s IDhanald thread.

e fork() - On afork(), a new task ID is assigned, the user context from the running
parent is copied to the child, and a deep copy is made of thepaiaddress space. Since
the CPU relies on the page directory/page table infrastradb access memory via virtual
addresses, both the source and destination of a copy musappeth at the same time.
This does not mean that it is necessary to map both entiressidpaces at the same time,
however. The copy may be done piece-meal, since the adqrassssare already naturally
divided into pages.

Any time you insert a “fake” mapping into a task’s page talde yhould realize that this
mapping will probably make its way into the TLB and may pdr#iere for an indefinite
period of timeafter you remove the mapping from the page taBlee Section 2.3.3 for one
approach to solving this problem.

e exec() -Onanexec(), the stack area for the new program must be initialized. Tdeks
for a new program begins with only one page of memory allatdtas traditional for the
“command line” argument vector to occupy memory above thetime stack.

24

9.3 Thread Exit

You will find that there are subtle issues associated witlbkmga thread or task to exit cleanly,
so it's a good idea to pseudo-code how this will work and whes & will interact with.

As you will discover during your design (or else during yompiementation), thread exit
will involve freeing a variety of resources. Furthermotes efficiency of the system is increased
if you can free resources quickly so they may are availablefber threads to use. Optional
challenge: how small can you make “zombie threads” in yogtean? Alternatively, how many
of the thread’s resources can the thread itself free, assggjto relying on outside help?

9.4 Kernel Initialization

Please consider going through these steps ik¢heel _mai n() function.

e Initialize the IDT entries for each interrupt that must badiad.

Clear the console. The initialization routines will leavmass.

¢ Build a structure to keep track of which physical frames areaurrently allocated.

e Build the initial page directory and page tables. Direct nttagpkernel’s virtual memory
space.

e Create and load the idle task. For grading purposes, you ssay@e that the “file system”
will contain a (single-threaded) executable cail@tie which you may run when no other
thread is runnable. Or you may choose to hand-craft an igdigrpm without reference to
an executable file.

e Create and load theni t task. For grading purposes, assume that the “file system” wil
contain an executable calledi t which will run the shell (or whatever grading harness
we decide to run). During your developmentj t should probably ork() a child that
exec() s the program i10user/ progs/ shel | . c. It is traditional fori nit to loop on
wai t () in order to garbage-collect orphaned zombie tasks; it ig @bditional for it to
react sensibly if the shell exits or is killed.

e Set the first thread running.

N.B. Suggesting thater nel _mai n implements these functions dasst imply that it must do
S0 via straight-line code with no helper functions.

10 Debugging

10.1 Requests for Help

Please do not ask for help from the course staff with a medgagthis:

25

I’'m getting the default trap handler telling me | have a geh@rotection fault.
What's wrong?

or

| installed my illegal instruction handler and now it’s tay me I've executed an
illegal instruction. What's wrong?

An important part of this class is developing your debuggkijs. In other words, when you
complete this class you should be able to debug problemswioic previously would not have
been able to handle.

Thus, when faced with a problem, you need to invest some tmfeyuring out a way to
characterize it and close in on it so you can observe it in thgshact of destruction. Your reflex
when running into a strange new problem should be to starkiting, not to start off by asking
for help.

Having said that, if a reasonable amount of time has beert syérg to solve a problem and
no progress has been made, do not hesitate to ask a questibpleBse be prepared with a list
of details and an explanation of what you have tried and ralgdo far.

10.2 Debugging Strategy

In general, when confronted by a mysterious problem, yowlshieegin with a “story” of what
you expectto be happening and measure the system you’re debugging tetse its behavior
diverges from your expectations.

To do this your story must be fairly detailed. For exampley gbould have a fairly good
mental model of the assembly code generated from a givenii@ecode. To understand why “a
variable has the wrong value” you need to know how the vagigbinitialized, where its value is
stored at various times, and how it moves from one locatiantither. If you're confused about
this, it is probably good for you to spend some time vgtlo - S.

Once your “story” is fleshed out, you will need to measure §stesn at increasing levels of
detail to determine the point of divergence. You will find yself spending some time thinking
about how to pin your code down to observe whether or not écpdéat misbehavior is happening.
You may need to write some code to periodically test datacgire consistency, artificially cause
a library routine to fail to observe how your main code regfmmhog actions taken by your code
and write a log-analyzer perl script, etc.

Please note that the kernel memory allocator is very sinldahe allocator written by 15-
213 students in the sense that when the allocator reportgeerrial” consistency failure, this
is overwhelminghjlikely to mean that the user of some memory overflowed it andupted the
allocator’'s meta-data. In other words, even though ther esrceportedby | rmfree(), itis
almost certainly not an erran | rmfree().

26

10.3 Kernel Debugging Tools

There are a number of ways to go about finding bugs in kerned.cdtie most direct way for
this project is to use the Simics symbolic debugger. Infdiomaabout how to use the Simics
debugger can be found in the documentation on the courseter¢dbB0/ si mi cs/ doc), and by
issuing thenel p command at the simics prompt.

Also available is theVAG C BREAK macro defined it10kernel /1i b/ i nc/ ker ndebug. h.
Placing this macro in code will cause the simulation to sewpgorarily so that the debugger may
be used.

The function calll printf kern() may also be used to output debugging messages to the
simics console, and to the file kernel.log. The prototype for ntf kern() can be found in
l'i b/inc/stdio.h.

10.4 User Task Debugging

Symbolic debugging user tasks can be useful in the coursenainf bugs in kernel
code. TheMAG C.BREAK macro is also available to user threads #iyncl udeing the
410user/inc/ magi c_br eak. h header file.

The function call pri ntf () may be used to output debugging messages from user programs.
Its prototype isin i b/inc/stdio. h.

Symbolic debugging of user programs involves some set-upnicS can keep track of
many different virtual memory spaces and symbol tables bga@aating the address of the page
directory with the file name of the program.

Simics must switch to the appropriate symbol table for theeru address space as soon as a
new value is placed ificr 3. For this to work, you must do three things.

1. When a new program is loaded, register its symbol tablé Bimics with a call to
SI Mregi st er _user _proc(), defined ird10kernel / 1'i b/ i nc/ ker ndebug. h.

2. When a program exits, please make a call td.unr egi st er _user _pr oc() defined in the
same file.

3. Every time you switch user address spacessdab cr3(), the Simics magic-break
instruction will be used to tell the Simics debugger to stviksymbol tables. If you
believe you must change the valueé®f 3 in assembly language, simply copy the relevant
instructions from theet _cr 3() we provide.

If you do not wish to enable debugging of user threads, sirdplyot register threads with
Simics, and use the macset _cr 3_nodebug() instead oset cr3().

11 Checkpoints

The kernel project is a large project spanning several we@ker the course of the project the
course staff would like to review the progress being madetltad reason, there are checkpoints

27

that will be strictly enforced. The checkpoints exist sa ihgportant feedback can be provided,
and so should be taken very seriously.

Don’'t be complacent about missing “just one” checkpointtc@eg up ishard: if you're
“merely” a week behind, that means you need to work twice ad foa an entire week in order
to catch up...

11.1 Checkpoint One

For Checkpoint One, you should have a user task (with onadhitbat can caljetti d(). This
sounds simple, but it involves quite a bit of work which youlywrobably need to plan carefully.
Strive to document most of this cotéeforeyou write it.

1. Draft fault handlers — you may end up re-writing these i@l challenge: can you
generatghese extremely repetitive assembly functions with C mre@ssor macros?).

2. Draft system call handler for gettid()
3. Draft pcb structures — think about the task/thread spltitye
4. Basic virtual memory system

e Dummy up a physical-frame allocator (allocate-only, n&jre
e Spec and write page-directory/page-table manipulatiatimes
e Spec and write draft “address space manager” (probablemhiaround a “region
list” with a list of per-region-type “methods”).
5. Rough first-program loader

e Set up atask.
e Set up athread.

Initialize various memory regions.

Decide on register values.
Craft kernel stack contents.

Set various control registers.

11.2 Checkpoint Two

For Checkpoint Two, it should be possible for two threadslfpbly belonging to two different
tasks, which may be hand-loaded) to context-switch bacKautit, andeitherf or k() orexec()
(your choice) should work.

Reaching Checkpoint Two will be much easier if your code fbe€kpoint One was carefully
designed and modular.

28

11.3 Checkpoint Three

For Checkpoint Three, roughly the third week of the projgci) should have approximately

half of the system calls and exception handlers done. Neateybu should count by lines of

code rather than by number of entry points—some are easierdtners. For example, the page
fault handler, which will require noticeable thought anglementation, is probably 50% of the
exception-handler implementation by itself.

11.4 Week Four

While we will probably not collect any further checkpoiny,the fourth week of the project you
shouldreally have at least started all of the system calls.

11.5 Week Five

You should aim to have all of your code written, by the end ¢f theek. You will have plenty of
bugs and rewriting to keep you busy in the last week (realggmember to focus your effort on
getting the core system calls working solidly—you won’'tp#se test suite if we can’t boot your
kernel, launch the shell, and have it run commands.

12 Strategy Suggestions

Before we begin, we'd like to recommend to you the sage wofd$5e410 student Anand
Thakker.

Each time you sit down to write code, pause to remind youtlatfyou love yourself,
and that you can demonstrate this love by writing good codgdarself.

Here are further suggestions:

e You will probably end up throwing away and re-writing somenftavial piece of code.
Try to leave time for that.

e As you progess through the project, you should acquire thigyato draw detailed pictures
of every part of the system. For example, if you come see thesecstaff about a problem,
we may well ask you to draw a picture of the thread stack at ¢t pvhere the problem is
encountered. We may also ask you to draw pictures of a tags fables, virtual address
space, etc. In general, at several points in the project yibbmeed to draw pictures to get
things right, so get in the habit of drawing pictures when’sein trouble.

e Try to schedulat leastthree chunks of time every week, eaateasttwo hours long, to
meet with your partner. You will need to talk about each dthende, update each other
on bug status, assign or re-assign responsibility for céalekb or particular bugs, etc.

29

e You should really be familiar with your partner’s code. Yowaymeed to answer exam
guestions based on it.

e Since a code merge takes time proportional to the inter-ennge, you should probably
merge frequently. If you work independently for five weeksyill probably take you a
week to merge your code, at which point you will have no timdebug it.

e Merging can be much easier if you use branches. For exammepartner can implement
f ork() while the other implementsadl i ne() . Each can work on an indepenent branch,
committing every hour or so, rolling back if necessary, addiest code, etc. Once the
readl i ne() implementor is done, she can merge the most recent revisidreobranch
against the trunk. Her partner can then merge from the tmitkhis working area. This
will probably result in a non-functional kernel, but obsethat the first partner’s branch,
the trunk, and his branch should all be ok and kernels can éekeld out and built from all
of them.

e If you are paranoid, there is no reason why you shouldn’t siccelly snapshot your
repository to a safe location in case your source contraesygoes haywire on you.

13 Plan of Attack

A recommended plan of attack has been established. Whilenagunot choose to do everything
in this order, it may provide you with some guidance. Hogdgfuhis will give some ideas about
how to start.

1. Read this handout and gain an understanding of the assignnfrirst, understand the
hardware, and then the operations that need to be implethei@pend time becoming
familiar with all of the ways the kernel could be invoked. Whappens on a transition
from user mode to kernel mode? What happens on a transitvom Kernel mode to user
mode?

2. Write pseudocode for the system calls as well as the ugehandlers, paging system, and
context switcher. Start by writing down how all of these gigfit together. Next, increase
the level of detail and think about how the pieces break dowm functions. Then, write
detailed pseudocode.

3. Based on the above step, rough out the Task Control BlodkTamead Control Blocks.
What should go in each?

4. Write functions for the manipulation of virtual addregmeses. Direct map the kernel's
virtual memory space. Keep track of free physical framesgufd out to allocate and
deallocate frames outside the kernel virtual space so theye assigned to tasks (optional
challenge: can you do this in a way which doesn’t consume rkemeel virtual space for
management overhead as the size of physical memory groges Par

30

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20

. Now that there is an initial page directory, it is posstiolenable paging. Do so, then write
the loader. Create a PCB for the idle task. Load and run tlectadk.

Implement theget ti d() system call. Once this is working, the system call interfisce
functioning correctly. Congratulations! You have reachbbdckpoint one.

. Write the timer interrupt handler. For now, simply verthat the IDT entry is installed
correctly, and that the interrupt handler is running.

. Write functions for scheduling and context switchingaba second task. Have the timer
interrupt handler context switch between the first and seétask.

Implement or k() orexec(). At this point you will have reached checkpoint two.

Implemenexec() orfork(), whichever one you skipped before. You can test how they
work together by having the init task spawn a third user tastom this point forward
your old code to hand-load a task should be invoked only on¢eioe, to loadi nit and
possiblyi dl e.

Implement théal t () system call. Why not? It's easy enough.
Implement th@ew_pages() system call, and test it with the user-maus | oc() .

Write a page fault handler that frames new pages on legakaes to the automatic-stack
region, and prints debugging information on bad accessas dye probably not ready to
kill threads at this point).

Integrate the keyboard interrupt handler and the cerdiaver into the kernel. Install an
entry for the keyboard in the IDT.

Implement the a rough version of theadl i ne() system call. If you haven't confronted
thread sleep/wakeup yet, you may want to dodge the issuednaggh to get the shell
running, but you can’t put it off forever. Keep in mind thaetkeyboard interrupt handler
and other eadl i ne() code may need to change during Project 4 to suppogéghehar ()
system call.

Implement therint (), set _termcol or (), andset _cursor _pos() system calls.

Implementwai t (), andexit (). Please take care thatit () is not grossly inefficient.
At this point, the shell should run, and you can argue thatlyae written an operating
system kernel. This is roughly checkpoint three.

Fill out the page fault handler. Threads should be kitledbad memory accesses.

Implement thel eep() system call. Recall that the round-robin scheduler shawhdim
constant time. It idad if your scheduler requires run-time proportional to the ivemof
non-runnablghreads. Hmm...

. Implement thgi el d() , deschedul e(), andmake_r unnabl e() system calls.

31

21. Implement hread f ork(), and test it using your thread library.

22. Go back and fill in any missing system calls. Anywhere yelied on a dummy

23.

24,
25.

implementation of some critical feature, replace the maés of the interface with
something better.

Write many test cases for each system call. Try to breakemel, since we will and you
want to get there first...

At this point youlREADVE. dox should contain an accurate known-bug list.

You're done! Celebrate!

32

	Introduction
	Overview
	Goals
	Technology Disclaimer
	Important Dates
	Groups
	Grading
	Interactions between Project 3 and Project 4
	Hand-in

	Hardware Primitives
	Pivilege Levels
	Segmentation
	Special Registers
	The Segment Selector Registers
	The EFLAGS Register
	Control Registers
	The Kernel Stack Pointer
	C interface

	Paging
	The Layout of Physical Memory

	The Boot Process
	Device Drivers and Interrupt Handlers
	Interrupts, Faults, and Exceptions
	Hardware Interrupts
	Software Interrupts
	Faults and Exceptions
	Interrupt Handler Flavors
	Writing an Interrupt Handler
	Interrupts and Preemption

	Device Drivers
	Floating-Point Unit

	Context Switching and Scheduling
	Context Switching
	Scheduling
	Scheduling, Sleeping, and Synchronization

	System Calls
	The System Call Interface
	Validation
	The System Calls

	Building and Loading User Programs
	Building User Programs
	Loading User Programs

	The Programming Environment
	Kernel Programming
	A Simple C Library
	Processor Utility Functions
	Makefile

	User Programming

	Hints on Implementing a Kernel
	Code Organization
	Encapsulation
	Method tables
	Embedded Traversal Fields
	List Traversal Macros
	Accessing User Memory

	Task/Thread Initialization
	Thread Exit
	Kernel Initialization

	Debugging
	Requests for Help
	Debugging Strategy
	Kernel Debugging Tools
	User Task Debugging

	Checkpoints
	Checkpoint One
	Checkpoint Two
	Checkpoint Three
	Week Four
	Week Five

	Strategy Suggestions
	Plan of Attack

