
Project 2: User Level Thread Library
15-410 Operating Systems

February 4, 2004

1 Overview

An important aspect of operating system design is organizing tasks that run concurrently and share
memory. Concurrency concerns are paramount when designing multi-threaded programs that share some
critical resource, be it some device or piece of memory. In this project you will write a thread library and
concurrency primitives. This document provides the background information and specification for writing
the thread library, and concurrency primitives.

We will provide you with a miniature operating system kernel (called “Pebbles”) which implements
a minimal set of system calls, and some multi-threaded programs. These programs will be linked
against your thread library, stored on a “RAM disk,” and then run under the supervision of the Pebbles
kernel. Pebbles is documented by the companion document, “Pebbles Kernel Specification,” which should
probably be read before this one.

The thread library will be based on the thread fork system call provided by Pebbles, which provides
a “raw” (unprocessed) interface to kernel-scheduled threads. Your library will provide a basic but usable
interface on top of this elemental thread building block, including the ability to join threads.

The concurrency primitives will be based on the XCHG instruction for atomically exchanging registers
and memory or registers and registers. With this instruction you will implement mutexes and condition
variables.

2 Goals

• Becoming familiar with the ways in which operating systems support user libraries by providing
system calls to create processes, affect scheduling, etc.

• Becoming familiar with programs that involve a high level of concurrency and the sharing of critical
resources, including the tools that are used to deal with these issues.

• Developing skills necessary to produce a substantial amount of code, such as organization and
project planning.

• Working with a partner is also an important aspect of this project. You will be working with a partner
on subsequent projects, so it is important to be familiar with scheduling time to work, a preferred
working environment, and developing a good group dynamic before beginning larger projects.

• Coming to understand the dynamics of source control in a group context, e.g., when to branch and
merge.

3 Important Dates

Wednesday, February 4th Project 2 begins

1

Wednesday, February 11th You should have thread creation, mutexes, and condition variables working
well.

Wednesday, February 18th Project 2 due at 23:59:59

4 Thread Library API

The library you will write will contain:

• Thread management calls

• Mutexes and condition variables

• Semaphores

• Readers/writers locks

Please note that all lock-like objects are defined to be “unlocked” when created.

You need not ensure bounded waiting if your project documentation includes an appropriate
explanation of why you believe it is likely to be true (or at least not flagrantly false) without effort on
your part.

Unlike system call stubs (see “Pebbles Kernel Specification”), thread library routines need not be one-
per-source-file, but we expect you to use good judgement when partitioning them (and this may influence
your grade to some extent). You should arrange that the Makefile infrastructure you are given will build
your library into libthread.a (see the README file in the tarball).

User programs will include thread.h, but will not directly include other header files you might write.

4.1 Thread Management API

• int thr init(unsigned int size) - This function is responsible for initializing the thread
library. The argument ’size’ specifies the size of the stack (including any memory used by an optional
thread-specific data facility) that each thread will have.

This function returns zero on success, and a negative number on an error.

The thread library can assume that programs using it are well-behaved in the sense that they will
call thr init(), exactly once, before calling any other thread library function (including memory
allocation functions in the malloc() family, described below) or invoking the thread fork system
call. Also, you may assume that all threads of a task using your thread library will call thr exit()
instead of directly invoking the exit() system call.

• int thr create(void *(*func)(void *), void *arg) - This function creates a new thread
to run func(arg). This function should allocate a stack for the new thread and then invoke the
thread fork system call in an appropriate way. A stack frame should be created for the child, and
the child should be provided with some way of accessing its thread identifier (tid). On success the
thread ID of the new thread is returned, on error a negative number is returned.

You should pay attention to (at least) two stack-related issues. First, the stack pointer should
essentially always be aligned on a 32-bit boundary (i.e., %esp mod 4 == 0). Second, you need
to think very carefully about the relationship of a new thread to the stack of the parent thread,
especially right after the thread fork system call has completed.

2

• int thr join(int tid, int *departed, void **status) - This function
suspends execution of the calling thread, and waits for thread tid to thr exit() if it exists. If
tid is zero any thread belonging to the invoking thread’s task is joined on. If departed is not NULL,
it is the address where the tid of the departing thread should be stored. If status is not NULL, the
value passed to thr exit() by the terminating thread will be placed in the location referenced by
status. Only one thread may join on any given thread. Others will return an error immediately. If
thread tid does not exist, an error will be returned. This function returns zero on success, and a
negative number on an error.

• void thr exit(void *status) - This function exits the thread with exit status status. If
a thread does not call thr exit(), the behavior should be the same as if the function did call
thr exit() and passed in the return value from the thread’s body function.

• int thr getid(void) - Returns the thread ID of the currently running thread.

Note that the “thread ID” referred to by your thread library routines is not required to be the same
“thread ID” which was returned by the thread fork system call. If you think about how you would
implement an “M:N” thread library, or a user-space thread library, you will see why these two name
spaces cannot always be the same. Whether (and how) you use kernel-issued thread ID’s as your thread
library’s thread ID’s is a design decision you will need to consider.

4.2 Mutexes

Mutual exclusion locks prevent multiple threads from simultaneously executing critical sections of code.
To implement mutexes you may use the XCHG instruction documented on page 3-714 of the Intel Instruction
Set Reference. For more information on the behavior of mutexes, feel free to refer to the text, or to the
Solaris or Linux man pages for the functions of names pthread mutex init(), etc..

• int mutex init(mutex t *mp) - This function should initialize the mutex pointed to by mp.
Effects of the use of a mutex before the mutex has been initialized may be undefined. This function
returns zero on success, and a negative number on an error.

• int mutex destroy(mutex t *mp) - This function should “deactivate” the mutex pointed to by
mp. The effects of using a mutex after it has been destroyed may be undefined. If this function is
called while the mutex is locked, it should immediately return an error. This function returns zero
on success, and a negative number on an error.

• int mutex lock(mutex t *mp) - A call to this function ensures mutual exclusion in the region
between itself and a call to mutex unlock(). A thread calling this function while another thread is
in the critical section should block until it is able to claim the lock. This function returns zero on
success, and a negative number on an error.

• int mutex unlock(mutex t *mp) - Signals the end of a region of mutual exclusion. The calling
thread gives up its claim to the lock. This function returns zero on success, and a negative number
on an error.

3

4.3 Condition Variables

Condition variables are used for waiting, for a while, for mutex-protected state to be modified by some
other thread. A condition variable allows a thread to voluntarily relinquish the CPU so that other threads
may make changes to the shared state, and then tell the waiting thread that they have done so. If there
is some shared resource, threads may de-schedule themselves and be woken up by whichever thread was
using that resource when that thread is finished with it. In implementing condition variables, you may use
your mutexes, and the system calls deschedule() and make runnable(). For more information on the
behaviour of condition variables, please see the man pages on either Solaris or Linux for the functions
pthread cond wait(), etc..

• int cond init(cond t *cv) - This function should initialize the condition variable pointed to
by cv. Effects of using a condition variable before it has been initialized may be undefined. This
function returns zero on success and a number less than zero on error.

• int cond destroy(cond t *cv) - This function should “deactivate” the condition variable
pointed to by cv. Effects of using a condition variable after it has been destroyed may be undefined.
If cond destroy() is called while threads are still blocked waiting on the condition variable, then
the function should return an error immediately. This function returns zero on success and a number
less than zero on an error.

• int cond wait(cond t *cv, mutex t *mp) - The condition wait function allows a thread to
wait for a condition and release the associated mutex that it needs to hold to check that condition.
The calling thread blocks, waiting to be signaled. The blocked thread may be awakened by a
cond signal() or a cond broadcast(). This function returns zero on success, and a negative
number on an error.

• int cond signal(cond t *cv) - This function should wake up a thread waiting on the
condition variable pointed to by cv, if one exists. This function returns zero on success, and a
negative number on an error. Note that “no threads waiting” is not an error condition.

• int cond broadcast(cond t *cv) - This function should wake up all threads waiting on the
condition variable pointed to by cv. This function returns zero on success, and a negative number
on an error.

Note that cond broadcast() should not awaken threads which may invoke cond wait(cv) “after”
this call to cond broadcast() has begun execution.1

4.4 Semaphores

As discussed in class, semaphores are a higher-level construct than mutexes and condition variables.
Implementing semaphores on top of mutexes and condition variables should be a straightforward but
hopefully illuminating experience.

• int sem init(sem t *sem, int count) - This function should initialize the semaphore
pointed to by sem to the value count. Effects of using a semaphore before it has been initialized
may be undefined. This function returns zero on success and a number less than zero on error.

1If that sounds a little fuzzy to you, you’re right–but if you think about it a bit longer it should make sense.

4

• int sem destroy(sem t *sem) - This function should “deactivate” the semaphore pointed to by
sem. Effects of using a semaphore after it has been destroyed may be undefined. If sem destroy()
is called while threads are still blocked waiting on the semaphore, then the function should return
an error immediately. This function returns zero on success and a number less than zero on an error.

• int sem wait(sem t *sem) - The semaphore wait function allows a thread to decrement a
semaphore value, and may cause it to block indefinitely until it is legal to perform the decrement.
This function returns zero on success, and a negative number on an error.

• int sem signal(sem t *sem) - This function should wake up a thread waiting on the
semaphore pointed to by sem, if one exists, and should update the semaphore value regardless.
This function returns zero on success, and a negative number on an error.

4.5 Readers/writers locks

Please refer to Section 7.5.2 of the textbook. We expect you to solve at least the “second” readers/writers
problem, but we would like to point out that there are other formulations than the “first” and “second.”
You may choose to implement something “at least as good as” the “second” case. Of course, no matter
what you choose to implement you should explain what, how, and why. You may choose which underlying
primitives (i.e., mutex/cvar or semaphore) to employ, but once again we are interested in the reasoning you
employ.

• int rwlock init(rwlock t *rwlock) - This function should initialize the lock pointed to by
rwlock. Effects of using a lock before it has been initialized may be undefined. This function
returns zero on success and a number less than zero on error.

• int rwlock destroy(rwlock t *rwlock) - This function should “deactivate” the lock pointed
to by rwlock. Effects of using a lock after it has been destroyed may be undefined. If
rwlock destroy() is called while threads are still blocked waiting on the lock, then the function
should return an error immediately. This function returns zero on success and a number less than
zero on an error.

• int rwlock lock(rwlock t *rwlock, int type) - The type parameter is required to be
either RWLOCK READ (for a shared lock) or RWLOCK WRITE (for an exclusive lock). This function
blocks the calling thread until it has been granted the requested form of access. This function returns
zero on success, and a negative number on an error.

• int rwlock unlock(rwlock t *rwlock) - This function indicates that the calling thread is
done using the locked state in whichever mode it was granted access for. Whether a call to this
function does or does not result in a thread being awakened depends on the policy you chose to
implement. This function returns zero on success, and a negative number on an error.

4.6 Safety & Concurrency

Please keep in mind that much of the code for this project needs to be thread safe. In particular the thread
library itself should be thread safe. However, by its nature a thread library must also be concurrent. In
other words, you may not solve the thread-safety problem with a hammer, such as using a global lock to
ensure that only one thread at a time can be running thread library code. In general, it should be possible
for many threads to be running each library interface function “at the same time.”

5

4.7 Distribution Files

The tarball for this project has been posted on the course webpage. Please read the README included
with the tarball.

5 Documentation

For each project in 15-410, functions and structures should be documented using doxygen. Doxygen uses
syntax similar to Javadoc. The Doxygen documentation can be found on the course website. The provided
Makefile has a target called html doc that will invoke doxygen on the source files listed in the Makefile.

6 The C Library

This is simply a list of the most common library functions that are provided. For details on using these
functions please see the appropriate man pages.

Other functions are provided that are not listed here. Please see the appropriate header files for a full
listing of the provided functions.

Some functions typically found in a C I/O library are provided by user/lib/libstdio.a. The header
file for these functions is user/lib/inc/stdio.h.

• int putchar(int c)

• int puts(const char *str)

• int printf(const char *format, ...)

• int sprintf(char *dest, const char *format, ...)

• int snprintf(char *dest, int size, const char *formant, ...)

• int sscanf(const char *str, const char *format, ...)

• void lprintf(const char *format, ...)

Note that lprintf() is the user-space analog of the lprintf kern() you used in Project 1.

Some functions typically found in various places in a standard C library are provided by
user/lib/libstdlib.a. The header files for these functions, in user/lib/inc, are stdlib.h,
assert.h, and ctype.h.

• int atoi(const char *str)

• long atol(const char *str)

• long strtol(const char *in, const char **out, int base)

• unsigned long strtoul(const char *in, const char **out, int base)

• void panic(const char *format, ...)

6

• void assert(int expression)

We are providing you with non-thread-safe versions of the standard C library memory allocation
routines. You are required to provide a thread-safe wrapper routine with the appropriate name (remove the
underscore character) for each provided routine. These should be genuine wrappers, i.e., do not copy and
modify the source code for the provided routines.

• void * malloc(size t size)

• void * calloc(size t nelt, size t eltsize)

• void * realloc(void *buf, size t new size)

• void free(void *buf)

You may assume that no calls to functions in the “malloc() family” will be made before the call to
thr init().

These functions will typically seek to allocate memory regions from the kernel which start at the top
of the data segment and proceed to grow upward. You will thus need to plan your use of the available
address space with some care.

Some functions typically found in a C string library are provided by user/lib/libstring.a. The
header file for these functions is user/lib/inc/string.h.

• int strlen(const char *s)

• char *strcpy(char *dest, char *src)

• char *strncpy(char *dest, char *src, int n)

• char *strdup(const char *s)

• char *strcat(char *dest, const char *src)

• char *strncat(char *dest, const char *src, int n)

• int strcmp(const char *a, const char *b)

• int strncmp(const char *a, const char *b, int n)

• void *memmove(void *to, const void *from, unsigned int n)

• void *memset(void *to, int ch, unsigned int n)

• void *memcpy(void *to, const void *from, unsigned int n)

7 Debugging

The same MAGIC BREAK macro which you used in Project 1 is also available to user code in Project 2 if
you #include the user/inc/magic break.h header file.

The function call lprintf() may be used to output debugging messages from user programs. Its
prototype is in user/lib/inc/stdio.h.

Also, user code can be symbolically debuged using the Simics symbolic debugger. If you restrict
yourself to debugging with printf() it may cost you significant amounts of time.

7

8 Deliverables

Implement the functions for the thread library, and concurrency tools conforming to the documented APIs.
Hand in all source files that you generate. Make sure to provide a design description in README.dox,
including an overview of existing issues and any interesting design decisions you made.

9 Grading Criteria

You will be graded on the completeness and correctness of your project. A complete project is composed
of a reasonable attempt at each function in the API. Also, a complete project follows the prescribed build
process, and is well documented. A correct project implements the provided specification. Also, code
using the API provided by a correct project will not be killed by the kernel, and will not suffer from
inconsistencies due to concurrency errors in the library. Please note that there exist concurrency errors
that even carefully-written test cases may not expose. Read and think through your code carefully. Do not
forget to consider pathological cases.

The most important parts of the assignment to complete are the thread management, mutex, and
condition variable calls. These should be well-designed and solidly implemented. It is probably unwise
to devote substantial coding effort to the other parts of the library before the core is reliable. In particular,
we strongly recommend that you attempt readers/writers locks after gaining confidence with concurrent
programming and achieving a stable basic thread library.

10 Strategy

10.1 Suggestions

First, this may be the first time you have written code with this variety and density of concurrency hazards.
If so, you will probably find this code much harder to debug than code you’ve written before, i.e., you
should allocate more debugging time than usual. Of course, the silver lining in this cloud is that experience
debugging concurrent code will probably be useful to you after you leave this class.

Second, several of the thread library functions are much harder then they first appear. It is fairly likely
that you will write half the code for a thread library function before realizing that you’ve never written
“that kind of code” before. When this happens the best course of action is probably to come to a complete
stop, think your way through the problem, and then explain the problem and your proposed solution to
your partner. It may also happen that as you write your fifth function you realize your second must be
scrapped and re-written.

Third, the Pebbles kernel offers a feature intended to help you increase the solidity of your code.
A special system call, void misbehave(int mode), alters the behavior of the kernel in ways which
may expose unwarranted assumptions or concurrency bugs in your library code. Values for mode range
from zero (the default behavior) to fifteen, or you may select -1 for behavior which may be particularly
challenging. As you experiment with misbehave(), you may become able to predict or describe the
behavior of a particular mode. Each group should keep confidential its own understanding of the meanings
of particular mode values.

Fourth, we recommend against splitting the assignment into two parts, working separately for two
weeks minus one day, and then meeting to “put the pieces together.” Instead, we recommend the opposite,

8

namely that you make it a habit to read and talk about each other’s code every few days. You may encounter
an exam question related to code your partner wrote.

10.2 Steps

1. Read the handout.

2. Right away write system call wrappers for one or two system calls and run a small test program
using those system calls. This is probably the best way to engage yourself in the project and to get an
initial grasp of its scope. A good first choice is exit(), since the C run-time start-up code requires
an exit() stub to exist before you can build any test program. A good second choice would be
print().

3. Write the remaining system call wrappers (with the exception of thread fork).

4. Design and make a draft version of mutexes and condition variables. In order to do that, you will
probably need to perform a hazard analysis of which system calls or system call sequences would
harm each other if their execution were interleaved by the scheduler switching from one thread to
another.

5. What can you test at this point? Be creative.

6. Think hard about stacks. What should the child’s stack look like before and after a thread fork?

7. Write and test thr init() and thr create().

8. Write thr exit(). Don’t worry about reporting exit status, yet—it’s tricky enough without that!

9. Test mutexes and condition variables.

10. Try all the misbehave() flavors.

11. Write and test thr join().

12. Worry about reporting the exit status.

13. This might be a good point to relax and have fun writing semaphores.

14. Test. Debug. Test. Debug. Test. Sleep once in a while.

15. Try all the misbehave() flavors (again).

16. Design, implement, and test readers/writers locks.

17. Celebrate! You have created a robust and useful kernel-supported user level thread library.

10.3 Questions & Challenges

Below we briefly discuss common questions about this assignment and issue several optional challenges.
It is very important that your implementation be solid, and you should not be diverted from this primary
goal by attempting to solve these challenges. However, we are providing this challenge list as a way for
interested students to deepen their understanding and sharpen their design skills.

9

10.3.1 Questions

From time to time we are asked how many threads must be supported by a library implementation. In
general the answer is that the thread library should not be a limiting factor—it should be possible to use all
available memory for threads, and of course it could happen one day that Pebbles would run on a machine
with more memory. In the other direction, if you feel you must impose a static limit on the number of
threads (or some other run-time feature), you should document your reasoning and we will attempt to take
it into account.

10.3.2 Challenge: efficient thr getid()

There is an easy way to implement thr getid(), but it is woefully inefficient. Can you do better? We
have given you a serious hint.

10.3.3 Challenge: thr init()

Is it really necessary that thr init() be called before malloc()? How might you build malloc()
to make that unnecessary? Is it really necessary to require the root thread of a task to explicitly call
thr exit()? Is there a way thr init() can arrange for that call to happen automatically?

10.3.4 Challenge: “reaper thread”

If you feel you need a “reaper thread,” consider whether it’s really necessary.

10.3.5 Challenge: memory-efficient thr exit()

Since there is no bound on how much time can pass between a thread exiting and its “parent” or “manager”
thread calling thr join(), it is undesirable for a “zombie thread” to hold onto large amounts of memory.
Can you avoid this situation? There are multiple approaches, with different tradeoffs.

10

	Overview
	Goals
	Important Dates
	Thread Library API
	Thread Management API
	Mutexes
	Condition Variables
	Semaphores
	Readers/writers locks
	Safety & Concurrency
	Distribution Files

	Documentation
	The C Library
	 Debugging
	 Deliverables
	 Grading Criteria
	 Strategy
	 Suggestions
	 Steps
	 Questions & Challenges
	Questions
	Challenge: efficient thr_getid()
	Challenge: thr_init()
	Challenge: ``reaper thread''
	Challenge: memory-efficient thr_exit()

