15-410, Operating System Design & Implementation
Pebbles Kernel Specification
February 4, 2004

Contents

1 Introduction
1.1 OVEIVIEW o

2 User Execution Environment

3 The System Call Interface
3.1 Invocationand Return
3.2 Validation
3.3 SystemCall Stub Library

4 System Call Specifications
4.1 OVEIVIEW . . . o o e e
42 LifeCycle e
4.3 Thread Management
4.4 Memory Management L
45 Console /O e
4.6 Miscellaneous System Interaction,

1 Introduction

This document defines the correct behavior of kernels for the Spring 2004 edition of 15-410. The
goal of this document is to supply information about behavior rather than implementation details.
In Project 2 you will be given a kernel binary exhibiting these behaviors upon which to build your
thread library; later, in Project 3, you will construct a kernel which behaves this way.

1.1 Overview

The 410 kernel environment supports multiple address spaces via hardware paging, preemptive
multitasking, and a small set of important system calls. Also, the kernel supplies device drivers
for the keyboard, the console, and the timer.

2 User Execution Environment

The “Pebbles” kernel supports multiple independent tasks, each of which serves as a protection
domain. A task’s resources include various memory regions and “invisible” kernel resources
(such as a queue of task-exit notifications). Some versions of the kernel support file I/O, in which
case file descriptors are task resources as well.

Execution proceeds by the kernel scheduling threads. Each thread represents an
independently-schedulable register set; all memory references and all system calls issued by
a thread represent accesses to resources defined and owned by the thread’s enclosing task. A
task may contain multiple threads, in which case all have equal access to all task resources.
A carefully designed set of cooperating library routines can leverage this feature to provide a
simplified version of POSIX “pthreads.”

Multiprocessor versions of the kernel may simultaneously run multiple threads of a single
task, one thread for each of several tasks, or a mixture.

When a task begins execution of a new program, the operating system builds several memory
regions from the executable file and command line arguments:

e A read-only code region containing machine instructions
e An optional read-only constant data region
e A read/write data region containing some variables.

e Assingle automatic stack region containing a mixture of variables and procedure call return
information. The stack begins at some “large” address and memory accesses typically
cause the kernel to add new pages, growing the region downward toward the top of the data
region. Of course, if they collide, disaster will result.

In addition, the task may add memory regions as specified below.

Pebbles allows one task to create another though the use of the f or k() and exec() system
calls, which you will not need for Project 2 (the shell program which we provide so you can
launch your test programs does use them).

3 The System Call Interface

3.1 Invocation and Return

User code will make requests of the kernel by issuing a software interrupt using the | NT
instruction. Interrupt numbers are defined inuser/|ib/inc/syscall int.h.

To invoke a system call, the following protocol is followed. If the system call takes one
32-bit parameter, it is placed in the %esi register. Then the appropriate interrupt, as defined
in syscal | _nuns. h, is raised via the | NT x instruction (each system call has been assigned its
own | NT instruction, hence its own value of x). If the system call expects more than one 32-bit
parameter, you should construct a “system call packet” containing the parameters and place the
address of the packet in %esi . In C you would create a structure like this:

struct read line_parns {

int len;
char *buf;
}orip;

It is probably a good idea for you to think about the declarations of your “packet” structures.
In particular, you probably want to consider how widely known these types must be.

After filling in the struct, you would arrange for & | p to be placed in %esi . When the system
call completes, the return value, if any, will be available in the %eax register.

Please remember your x86 calling convention rules. If you modify any callee-saved registers
inside your stub routines, you must restore their values before returning to your caller.

3.2 Validation

The 410 kernel verifies that every byte of every system call argument lies in a memory region
which the invoking thread’s task has appropriate permission to access. System calls will return
an integer error code less than zero if any part of any argument is invalid. The kernel does not
kill a user thread that invokes a system call with a bad argument. No action taken by user code
should ever cause the kernel to crash, hang, or otherwise fail to perform its job.

3.3 System Call Stub Library

While the kernel provides system calls for your use, It does not provide a “C library” which
accesses those calls. Before your programs can get the kernel to do anything for them, you will
need to implement an assembly code “stub” for each system call.

Stub routines must be one per file and you should arrange that the Makefile infrastructure you
are given will build them into | i bsyscal | . a (see the README file in the tarball). While system
call stubs resemble the trap handler wrappers you wrote for Project 1, they are different in one
critical way. Since your kernel must always be ready to respond to any interrupt or trap, it can
potentially use every wrapper during each execution, and all must be linked into the object file.
However, the average user program does not invoke every system call during the course of its
execution. In fact, many user programs contain only a trivial amount of code. If you create one
huge system call stub file containing the code to invoke every system call, the linker will happily
append the huge .o file to every user-level program you build and your “RAM disk” file system
will overflow.

When building your stub library, you must match the declarations in
user/lib/inc/syscall.h in every detail. Otherwise, our test programs will not link against
your stub library.

4 System Call Specifications

4.1 Overview
The system calls provided by the 410 kernel can be broken into five groups, namely

e Life Cycle

Thread Management

Memory Management
e Console I/0

e Miscellaneous System Interaction

The following descriptions of system calls use C function declaration syntax even though the
actual system call interface, as described in Section 3, is defined in terms of assembly-language
primitives. This means that student teams must write a system call stub library, as described in
Section 3.3, in order to invoke any system calls. This stub library is a deliverable.

Unless otherwise noted, system calls return zero on success and an error code less than zero
if something goes wrong.

One system call, t hr ead_f or k() , is presented without a C-style declaration. This is because
the actions performed by t hread_f ork() are outside of the scope of, and manipulate, the C
language runtime environment. You will need to determine for yourself the correct manner and
context for invoking t hread_fork(). It is not an oversight that t hread_f or k() is “missing”
from the system call prototype include file, and you must not add it!

42 LifeCycle

This group contains system calls which manage the creation and destruction of tasks and threads.

e int fork(void) - Creates a new task. The new task receives an exact, coherent copy of
all memory regions of the invoking task. The new task contains a single thread which is
a copy of the thread invoking fork() except for the return value of the system call. If
fork() succeeds, the invoking thread will receive the ID of the new task’s thread and the
newly created thread will receive the value zero.

Errors are reported via a negative return value, in which case no new task has been created.

Some kernel versions reject calls to fork() which take place while the invoking task
contains more than one thread.

e thread_fork - Creates a new thread in the current task (i.e., the new thread will share all
task resources as described in Section 2).

The invoking thread’s return value in %ax is the thread ID of the newly-created thread; the
new thread’s return value is zero.

Errors are reported via a negative return value, in which case no new thread has been
created.

Some kernel versions reject calls to f or k() or exec() which take place while the invoking
task contains more than one thread.

e int exec(char *execnane, char **argvec) -

Replaces the program currently running in the invoking task with the program stored in
the file named execnane. The argument ar gvec points to a null-terminated vector of null-
terminated string arguments.

The number of strings in the vector and the vector itself will be transported into the memory
of the new task where they will serve as the first and second arguments of the the new
program’s nmai n(), respectively. It is conventional that ar gvec[0] is the same string as
execnane and ar gvec[1] is the first command line parameter, etc. Some programs will
behave oddly if this convention is not followed.

Reasonable limits may be placed on the number of arguments that a user program may pass
to exec(), and the length of each argument.

The kernel does as much validation as possible of the exec() request before deallocating
the old program’s resources.

On success, this system call does not return to the invoking program, since it is no longer
running. If something goes wrong, an integer error code less than zero will be returned.

Some kernel versions reject calls to exec() which take place while the invoking task
contains more than one thread.

e void exit(int status) - Terminates execution of the calling thread immediately. If

4.3

the invoking thread is the last thread in its task, the kernel deallocates all resources in use
by the task and makes the st at us parameter available to the parent task viawai t () . If the
parent task is no longer running, the exit status is made available to the kernel-launched
“init” task instead.

If the kernel decides to kill a thread, the effect should be the same as if the thread had
invoked exi t (-1), except that the kernel may choose to display an appropriate message
on the system console.

The exi t () of one thread, voluntary or involuntary, does not cause the kernel to destroy
any other thread.

int wait(int *status_ptr) - When the last thread of a task calls exi t (), the st at us
parameter is made available to the “parent task” in the integer referenced by st at us ptr.

A task’s “parent task” is the task which invoked f or k() to create the task.

If no error occurs, the return value of wai t () is the thread ID of the first thread originally
created in exiting task, not the thread ID of the last thread in that task to exi t () .

The wai t () system call may be invoked simultaneously by any number of threads in a
task; results will be matched to threads in a first-come-first-served fashion. If one or more
threads invoke wai t () while child tasks have not yet exited, they will block until one exits.

Whenever a task has no un-exited child tasks, any pending or new calls to wai t () will
return an integer error code less than zero.

Thread Management
int gettid() - Returns the thread ID of the invoking thread.

int yield(int tid) - Defers execution of the invoking thread to a time determined
by the scheduler, in favor of the thread with ID tid. If tid is -1, the scheduler may
determine which thread to run next. The only threads whose scheduling should be affected
by yi el d() are the calling thread, and the thread that is yi el d() ed to. If the thread with
IDtidisnotrunnable, or doesn’t exist, then an integer error code less than zero is returned.
Zero is returned on success.

int deschedul e(int *reject) - Atomically checks the integer pointed to by rej ect.
If the integer is non-zero, the call returns immediately with return value zero. If the integer
pointed to by r ej ect is zero, then the calling thread will not be run by the scheduler until
amake_runnabl e() call is made specifying the thread which invoked deschedul e() .

An integer error code less than zero is returned if reject is not a valid pointer.

This system call is atomic with respect to make_runnabl e() : the process of examining
rej ect and suspending the thread will not be interleaved with any execution of
make_r unnabl e() by another thread.

4.4

4.5

i nt make_runnabl e(int tid) - Makesthe deschedul e()dthread with IDti d runnable
by the scheduler. On success, zero is returned. If tid is not the ID of a thread currently
non-runnable due to a call to deschedul e(), then an integer error code less than zero is
returned.

unsi gned int get_ticks(void) - Returns the number of timer ticks which have
occurred since system boot.

int sleep(int ticks) - Deschedules the calling thread until at least ti cks timer
interrupts have occurred after the call. Returns immediately if ti cks is zero. Returns
an integer error code less than zero if t i cks is negative. Returns zero otherwise.

Memory M anagement

int new_pages(void *addr, int |en) - Allocates new memory to the invoking task,
starting at addr and extending for | en bytes.

new_pages() will fail, returning a negative integer error code, if addr is not page-aligned,
if | en is not a multiple of the system page size, if any portion of the region already
represents memory in the task’s address space, if the new memory region would be too
close! to the bottom of the automatic stack region, or if the operating system has insufficient
resources to satisfy the request.

Otherwise, the return code will be zero and the new memory will immediately be visible
to all threads in the invoking task.

i nt remove_pages(void *addr) - Deallocates the specified memory region, which must
presently be allocated as the result of a previous call to new_pages() which specified the
same value of addr . Returns zero if successful or returns a negative integer failure code.

Console /O

char getchar() - Returns a single character from the character input stream. If the input
stream is empty the thread is descheduled until a character is available. If some other
thread is descheduled on areadl i ne() or getchar (), then the calling thread must block
and wait its turn to access the input stream. Characters processed by the get char () system
call should not be echoed to the console.

int readline(int len, char *buf) - Reads the next line from the console and copies
it into the buffer pointed to by buf . If there is no line of input currently available, the calling
thread is descheduled until one is. If some other thread is descheduled onareadl i ne() or
aget char (), then the calling thread must block and wait its turn to access the input stream.
The length of the buffer is indicated by | en. If the length of the line exceeds the length
of the buffer, only | en-1 characters should be copied into buf . Characters not placed in

1Two pagesis probably too close.

4.6

the buffer should remain available for other calls to r eadl i ne() and/or get char (). The
available line should not be copied into buf until there is a newline character available. If
the line is smaller than the buffer, then the complete line including the newline character
is copied into the buffer. Characters that will be consumed by a readl i ne() will be
echoed to the console as soon as possible. If there is no outstanding call to r eadl i ne() no
characters should be echoed. Echoed user input may be interleaved with output due to calls
to print(). The readline system call returns the number of bytes copied into the buffer.
An integer error code less than zero is returned if buf is not a valid memory address, if buf
falls in a read-only memory region of the task, or if | en is unreasonably large.?

int print(int len, char *buf) - Prints| en bytes of memory, starting at buf, to the
console. The calling thread should block until all characters have been printed to the
console. Output of two concurrent print () s should not be intermixed. If | en is larger
than some reasonable maximum or if buf is not a valid memory address, an integer error
code less than zero should be returned.

int set_termcolor(int color) - Setsthe terminal print color for any future output to
the console. If col or does not specify a valid color, an integer error code less than zero
should be returned. Zero is returned on success.

int set_cursor_pos(int row, int col) - Setsthe cursor to the location (row, col).
If the location is not valid, an integer error code less than zero is returned. Zero is returned
0N success.

int get_cursor_pos(int *row, int *col) - Writes the current location of the cursor
to the addresses provided as arguments. If the arguments are not valid addresses, then an
error code less than zero is returned. Zero is returned on success.

Miscellaneous System | nteraction

int I's(int size, char *buf) - Fills in the user-specified buffer with the names of
executable files stored in the system’s RAM disk “file system.” If there is enough room
in the buffer for all of the (null-terminated) file names and an additional null byte after
the last filename’s terminating null, the system call will return the number of filenames
successfully copied. Otherwise, an error code less than zero is returned and the contents
of the buffer are undefined. For the curious among you, this system call is (very) loosely
modeled on the System V get dent s() call.

voi d hal t() - Shuts down the operating system. If the kernel is running under Simics,
the simulation will be shut down viaa call to SI Mhal t ().

2Deciding on this valueis easier than it may seem at fi rst.

8

	Introduction
	Overview

	User Execution Environment
	The System Call Interface
	Invocation and Return
	Validation
	System Call Stub Library

	System Call Specifications
	Overview
	Life Cycle
	Thread Management
	Memory Management
	Console I/O
	Miscellaneous System Interaction

