
Operating System Structure

Joey Echeverria
jge@andrew.cmu.edu

April 23, 2004

Carnegie Mellon University: 15-410 Spring 2004



Overview

• Motivations

• Kernel Structures

– Monolithic Kernels
– Open Systems
– Microkernels
– Kernel Extensions
– Exokernels

• Final Thoughts

2



Motivations

• Operating systems have a hard job.

• Operating systems are:

– Abstraction layers
– Resource allocators
– Protection boundaries
– Schedulers
– Complicated

3



Motivations

• Abstraction Layer

– Operating systems present a simplified view of hardware
– Applications see a well defined interface (system calls)

• Resource Allocator

– Operating systems allocate hardware resources to processes
∗ memory
∗ network
∗ disk space
∗ CPU time
∗ I/O devices

4



Motivations

• Protection Boundaries

– Operating systems protect processes from each other and itself from
process.

– Note: Everyone trusts the kernel.

• Schedulers

– Operating systems schedule access to resources.
– e.g., process scheduling, disk scheduling, etc.

• Complicated

– See Project 3 :)

5



Monolithic Kernels

Kernel

Security

DiskCPU

libc libpthread libc libpthread

MozillaApache Emacs

libc

CPU Scheduling

Virtual Memory

Networking

File System

Device Drivers

Interprocess Communication

I/OMemory Network

6



Monolithic Kernels

• You’ve seen this before.

• The kernel is all in one place with no protection between components.

• Applications use a well-defined system call interface to interact with the
kernel.

• Examples: UNIX, Mac OS X, Windows NT/XP, Linux, BSD, i.e., common

7



Monolithic Kernels

• Advantages:

– Well understood
– Good performance
– High level of protection between applications

• Disadvantages:

– No protection between kernel components
– Not extensible
– Overall structure is complicated
∗ Everything is intermixed
∗ There aren’t clear boundaries between modules

8



Open Systems

Kernel and
Applications

Apache Emacs

Networking

libc

libpthreadMozilla

Virtual Memory File System

Device Drivers

Interprocess Communication

DiskNetworkMemoryCPU I/O

9



Open Systems

• Applications, libraries, and kernel all sit in the same address space

• Does anyone actually do this craziness?

– MS-DOS
– Mac OS 9 and prior
– Windows ME and prior
– PalmOS
– some embedded systems

• Used to be very common

10



Open Systems

• Advantages:

– Very good performance
– Very extensible
∗ Undocumented Windows, Schulman et al. 1992
∗ In the case of Mac OS and PalmOS there’s an extensions industry

– Can work well in practice

• Disadvantages:

– No protection between kernel and/or applications
– Not particularly stable
– Composing extensions can result in unpredictable results

11



Microkernels

Disk I/O

Mozilla

libc

libc

Microkernel

CPU Memory Network

libclibpthread

Apache

libpthread

Virtual Memory

Processes

Networking

File System

Emacs

Device Drivers
CPU Scheduling

Interprocess Communication Security

12



Microkernels

• Replace the monolithic kernel with a small set of abstractions needed to
support the hardware.

• Move the rest of the OS into server processes

• The microkernel provides security, IPC, and a small level of hardware
interaction.

• Examples: Mach, Chorus, QNX, GNU/Hurd, L4

• Mixed results: QNX successful in the embedded space, microkernels are
mostly nonexistent elsewhere

13



Microkernels

• Advantages:

– Extensible: just add a new server to extend the kernel
– “Operating system” agnostic:
∗ Support of operating system personalities
∗ Have a server for each system (Mac, Windows, UNIX)
∗ All applications can run on the same kernel
∗ IBM Workplace OS
· one kernel for OS/2, OS/400, and AIX
· based on Mach 3.0
· failure

– High security, the operating system is protected even from itself.
– Naturally extended to distributed systems.

14



Microkernels

• Disadvantages:

– Performance
∗ Never really verified
∗ But it was a common complaint
∗ Real answer: No one knows

– Expensive to re-implement everything using a new model

15



Mach

• Started as a project at CMU (based on RIG project from Rochester)

• Plan

– Proof of concept
∗ Take BSD 4.1 fix parts like VM, user visible kernel threads, ipc

– Microkernel and a single-server
∗ Take the kernel and saw in half

– Microkernel and multiple servers (FS, paging, network, etc.)
∗ Servers glued together by OS personality modules which catch syscalls

16



Mach

• What actually happened:

– Proof of concept
∗ Completed in 1989
∗ Unix: smp, kernel threads, 5 architectures
∗ Commercial deployment: Encore Multimax, Convex Exemplar (SPP-

UX), OSF/1
∗ Avie Tevanian took this to NeXT: NeXTStep→ OS X)

– Microkernel and a single-server
∗ Completed, deployed to 10’s of machines (everybody graduated)

– Microkernel and multiple servers (FS, paging, network, etc.)
∗ Never really completed (everybody graduated)

17



GNU Hurd

• Hurd stands for ’Hird of Unix-Replacing Daemons’ and Hird stands for ’Hurd
of Interfaces Representing Depth’

• GNU Hurd is the FSF’s kernel

• Work began in 1990 on the kernel

• The kernel is to be completed Real Soon Now™

18



Kernel Extensions

User Kernel Extensions

Default Services

Core Services

Fast Sockets

libc

Apache

libpthread

Mozilla

libc libpthread libc

Emacs

Custom FS

File System Networking Device Drivers

CPU Scheduler VM SecurityInterprocess Communication

CPU Memory Network Disk

Kernel

I/O

FS and Sockets

19



Kernel Extensions

• Two related ideas: old way and new way

• Old way:

– System administrator adds a new whatever to an existing kernel
– This can be hot or may require a reboot: no compiling
– VMS, Windows NT, Linux, BSD, Mac OS X
– Safe? ”of course”

20



Kernel Extensions

• New way:

– Allow users to download enhancements into the kernel
– This can be done with type safety (Spin: Modula-3) or proof-carrying code

(PCC)
– Spin (University of Washington), Proof-carrying code (CMU)
– Safe? Gauranteed

21



Kernel Extensions

• Advantages:

– Extensible, just add a new extension.
– Safe (New way)
– Good performance because everything is in the kernel.

• Disadvantages:

– Rely on compilers, PCC proof checker, head of project, etc. for safety.
– Constrain implementation language on systems like Spin
– The old way doesn’t give safety, but does give extensibility

22



Pause

• So far we’ve really just moving things around

• There is still a VM system, file system, IPC, etc.

• Why should I trust the kernel to give me a filesystem that is good for me?

• Let’s try something different.

23



Exokernels

Mozilla

Fast Sockets
VM

Emacs

libPosix

Exokernel
Security

TLB

DiskCPU Memory Network

CPU Scheduler

I/O

FS
Fast Sockets

VM

Apache

24



Exokernels

• Basic idea: Take the operating system out of the kernel and put it into
libraries

• Why? Applications know better how they want hardware resources
managed than kernel writers do.

• Is this safe? Sure, the Exokernel’s job is to provide safe, multiplexed access
to the hardware.

• This separates the security and protection from the management of
resources.

25



Exokernels: VM Example

• There is no fork()

• There is no exec()

• There is no automatic stack growth

• Exokernel keeps track of physical memory pages and assigns them to an
application on demand

• Application makes a call into the Exokernel and asks for a physical memory
page

• Exokernel maps virtual pages to physical apges in a page access matrix

26



Exokernels: VM Example

• fork():

– Application asks the kernel for a bunch of pages
– Application copies it’s pages into the new ones
– The point is that the kernel doesn’t provide this service
– Alternative, mark pages copy on write except for the pages that fork() is

using.

27



Exokernels: VM Example

• To revoke a virtual to physical mapping, the Exokernel asks for a physical
page victim

• If an application does not cooperate, the Exokernel can take a physical page
by force, writing it out to disk

• The application is free to manage it’s virtual to physical mappings using any
data structure it wants.

28



Exokernels

• Advantages:

– Extensible: just add a new libOS
– Fast: Applications get direct access to hardware
– Safe: Exokernel allows safe sharing of resources

• Disadvantages:

– Still complicated, just moving it up into user space libraries
– Extensible in theory, in practice need to change libPosix which is a lot like

changing a monolithic kernel.
– Expensive to rewrite existing kernels
– send file(2) - Why change when you can steal?
– Requires policy, despite assertions to the contrary

29



Exokernels

• Why is this faster again?

• Example: Cheetah Web Server

– Optimize the FS and network system for web server functionality.
– In a typical web server the data has to go from:

1. the disk to kernel memory
2. kernel memory to user memory
3. user memory back to kernel memory
4. kernel memory to the network device

– In an exokernel, the application can have the data go straight from disk to
the network interface.

30



Exokernels

• Traditional kernel and web server:

– read() - copy from disk to kernel buffer
– read() - copy from kernel buffer to user buffer
– send() - user buffer to kernel buffer
– send() - data is check-summed
– send() - kernel buffer to device memory

31



Exokernels

• Exokernel and Cheetah:

– Copy from disk to memory
– Copy from memory to network
– Filesystem doesn’t store files, stores packets without a header
– Header is added when the data is sent out
– This saves the system from recomputing a checksum, saves processing

power

32



Exokernels

33



Final Thoughts

• Operating systems are complicated.

• Structure does matter.

• Many alternatives, but monolithic with a little bit of kernel extensions thrown
in are the most common.

• Why did none of the other structures win?

• Why should I re-implement my kernel when I can just add the functionality
that gave you better performance numbers? (see send file(2)).

34


