
15-410, S’04- 1 -

Security Applications
Apr. 19, 2004

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L33_Security

15-410
“...What about gummy bears?...”

15-410, S’04- 2 -

Synchronization

Hand-in directories have been createdHand-in directories have been created
� group-xx/p3extra XOR group-xx/p4

Upcoming lectures – the ECE invasionUpcoming lectures – the ECE invasion
� Eno Thereska on advanced disk scheduling
� Joey Echeverria on comparative OS structure

15-410, S’04- 3 -

Outline

TodayToday
� Warm-up: Password file
� One-time passwords
� Review: private-key, public-key crypto
� Kerberos
� SSL
� PGP
� Biometrics

DisclaimerDisclaimer
� Presentations will be key ideas, not exact protocols

15-410, S’04- 4 -

Password File

GoalGoal
� User memorizes a small key
� User presents key, machine verifies it

Wrong approachWrong approach
� Store keys in file

15-410, S’04- 5 -

Hashed Password File

BetterBetter
� Store hash(key)
� User presents key
� Login computes hash(key), verifies

Password file no longer must be secretPassword file no longer must be secret
� It doesn't contain keys, only key hashes

Vulnerable to Vulnerable to dictionarydictionary attack attack
� Cracker computes hash(“a”), hash(“b”), ...
� Once computed, works for many users

Can we make the job harder?Can we make the job harder?

15-410, S’04- 6 -

Salted Hashed Password File

Choose random number for each userChoose random number for each user

Store #, hash(key,#)Store #, hash(key,#)

User presents keyUser presents key

Login computes hash(typed-key,#) - no harderLogin computes hash(typed-key,#) - no harder

Cracker must compute a Cracker must compute a much largermuch larger dictionary dictionary

Can we do better?Can we do better?

15-410, S’04- 7 -

Shadow Salted Hashed Password
File
Protect the password file after allProtect the password file after all

“Defense in depth” - Cracker must“Defense in depth” - Cracker must
� Either

� Compute enormous dictionary
� Break system security to get hashed password file
� Scan enormous dictionary

� Or
� Break system security to get hashed password file
� Run dictionary attack on each user in password file

There are probably easier ways into the systemThere are probably easier ways into the system
� ...such as bribing a user!

15-410, S’04- 8 -

One-time passwords

What if somebody What if somebody doesdoes eavesdrop? eavesdrop?
� Can they undetectably impersonate you forever?

ApproachApproach
� System (and user!) store key list

� User presents head of list, system verifies
� User and system destroy that item

Alternate approachAlternate approach
� Portable cryptographic clock (“SecureID”)

� Sealed box which displays E(time, key)
� Only box, server know key
� User types in display value as a password

15-410, S’04- 9 -

Private Key

Concept: Concept: symmetricsymmetric cipher cipher
cipher = E(text , Key)

text = E(cipher , Key)

GoodGood
� Fast, intuitive (password-like), small keys

BadBad
� Must share a key (privately!) before talking

ApplicationsApplications
� Bank ATM links, secure telephones

15-410, S’04- 10 -

Public Key

Concept: Concept: asymmetricasymmetric cipher (aka “magic”) cipher (aka “magic”)
cipher = E(text , Key1)

text = D(cipher , Key2)

Keys are Keys are differentdifferent
� Generate key pair
� Publish “public key”
� Keep “private key” very secret

15-410, S’04- 11 -

Public Key Encryption

Sending secret mailSending secret mail
� Locate receiver's public key
� Encrypt mail with it
� Nobody can read it

� Not even you!

Receiving secret mailReceiving secret mail
� Decrypt mail with your private key

� No matter who sent it

15-410, S’04- 12 -

Public Key Signatures

Write a documentWrite a document

Encrypt it with your private keyEncrypt it with your private key
� Nobody else can do that

Transmit plaintext Transmit plaintext and ciphertextand ciphertext of document of document

Anybody can decrypt with your public keyAnybody can decrypt with your public key
� If they match, the sender knew your private key

� ...sender was you, more or less

(really: send E(hash(msg), K(really: send E(hash(msg), K pp))))

15-410, S’04- 13 -

Public Key Cryptography

GoodGood
� No need to privately exchange keys

BadBad
� Algorithms are slower than private-key
� Must trust key directory

ApplicationsApplications
� Secret mail, signatures

15-410, S’04- 14 -

Comparison

Private-key algorithmsPrivate-key algorithms
� Fast crypto, small keys
� Secret-key-distribution problem

Public-key algorithmsPublic-key algorithms
� “Telephone directory” key distribution
� Slow crypto, keys too large to memorize

Can we get the best of both?Can we get the best of both?

15-410, S’04- 15 -

Kerberos

GoalsGoals
� Authenticate & encrypt for N users, M servers
� Fast private-key encryption
� Users remember one small key

ProblemProblem
� Private-key encryption requires shared key to

communicate
� Can't have system with NxM keys!

IntuitionIntuition
� Trusted third party knows single key of every user, server

15-410, S’04- 16 -

Not Really Kerberos

Client contacts server with a Client contacts server with a ticketticket
� Specifies identity of holder

� Server will use identity for access control checks
� Specifies session key for encryption

� Server will decrypt messages from client
� Also provides authentication – only client can encrypt

� Specifies time of issuance
� Ticket “times out”, client must re-prove it knows its key

15-410, S’04- 17 -

Not Really Kerberos

Ticket formatTicket format
� Ticket={client,time,K session }Ks

ObservationsObservations
� Server knows K s, can decrypt & understand the ticket

� Clients can't print tickets, since they don't know K s

� Session key is provided to server via encrypted channel
� Eavesdroppers can't learn session key
� Client-server communication will be secure

How does client get the ticket?How does client get the ticket?
� Only server & Kerberos Distribution Center know K s...

15-410, S’04- 18 -

Not Really Kerberos

Client sends to Key Distribution CenterClient sends to Key Distribution Center
� “I want a ticket for the printing service”
� {client, server, time}

KDC sends clientKDC sends client
� {Ksession ,server,time}K c

� Client can decrypt this to learn session key
� Client knows ticket issue, expiration times

� Ticket={client,time,K session }Ks
� Client cannot decrypt ticket
� Client transmits ticket to server as-is

15-410, S’04- 19 -

Not Really Kerberos

Results (client)Results (client)
� Client has session key for encryption

� Can trust that only desired server knows it

Results (server)Results (server)
� Server knows identity of client
� Server knows how long to trust that identity
� Server has session key for encryption

� Any meaningful data which decrypt must be from that client

OverallOverall
� N users, M servers
� System has N+M keys, each entity remembers only one

15-410, S’04- 20 -

Securing a Kerberos Realm

KDC (Kerberos Distribution Center)KDC (Kerberos Distribution Center)
� Knows all keys in system
� Single point of failure

� If it's down, clients can't get tickets to contact more servers...
� Single point of compromise
� Very delicate to construct & deploy

� Turn off most Internet services
� Maybe boot from read-only media
� Unwise to back up key database to “shelf full of tapes”

Typical approachTypical approach
� Multiple instances of server (master/slave)
� Deployed in locked boxes in machine room

15-410, S’04- 21 -

SSL

GoalsGoals
� Fast, secure commnication
� Any client can contact any server on planet

ProblemsProblems
� There is no single trusted party for the whole planet

� Can't use Kerberos approach
� Solution: public-key cryptography?

� Problem: public key algorithms are slow
� Problem: there is no global public-key directory

15-410, S’04- 22 -

SSL Approach (Wrong)

ApproachApproach
� Use private-key/symmetric encryption for speed
� Swap symmetric session keys via public-key crypto

� Temporary random session keys similar to Kerberos

StepsSteps
� Client looks up server's public key in global directory
� Client generates random symmetric key (e.g., DES)
� Client encrypts DES key using server's public key
� Now client, server both know session key
� Client knows it is talking to the desired server

� After all, nobody else can do the decrypt...

15-410, S’04- 23 -

SSL Approach (Wrong)

ProblemProblem
� There is no global key directory
� Would be a single point of compromise

� False server keys enable server spoofing

ApproachApproach
� Replace global directory with chain of trust
� Servers present their own keys to clients
� Keys are signed by “well-known” certifiers

15-410, S’04- 24 -

Not SSL

Server certificateServer certificate
� Whoever can decrypt messages encrypted with public key

AAFD01234DE34BEEF997C is www.cmu.edu

Protocol operationProtocol operation
� Client calls server, requests certificate
� Server sends certificate
� Client generates private-key session key
� Client sends {K session }Kserver to server

� If server can decrypt and use K session , it must be legit

15-410, S’04- 25 -

SSL Certificates

How did we know to trust that certificate?How did we know to trust that certificate?

Certificates signed by Certificates signed by certificate authoritiescertificate authorities
� USPS, Visa, Baltimore CyberTrust, CMU
� “Whoever can decrypt messages encrypted with public

key AAFD01234DE34BEEF997C is www.cmu.edu
� Signed, Baltimore CyberTrust”

Signature verificationSignature verification
� Look up public key of Baltimore CyberTrust in global

directory...oops!

Browser vendor ships CA public keys in browserBrowser vendor ships CA public keys in browser
� “Chain of trust”: Mozilla.org, Baltimore Cybertrust, server

15-410, S’04- 26 -

PGP

GoalGoal
� “Pretty Good Privacy” for the masses
� Without depending on a central authority

ApproachApproach
� Users generate public-key key pairs
� Public keys stored “on the web”
� Users sign each other's keys

ProblemProblem
� How do I trust a public key I get “from the web”?

15-410, S’04- 27 -

“On the Web”

PGP key server protocolPGP key server protocol
� ???: Here is de0u@andrew.cmu.edu's latest public key!

� Server: “Looks good to me!”
� Bruce: What is de0u@andrew.cmu.edu's public key?

� Server: Here are 8 possibilities...decide which to trust!

How do I How do I trusttrust a public key I get “from the web”? a public key I get “from the web”?
� “Certificate Authority” approach has issues

� They typically charge $50-$1000 per certificate per year
� They are businesses...governments can lean on them

» ...to present false keys...
» ...to delete your key from their directory...
» ...to refuse to sign your key...

15-410, S’04- 28 -

PGP

““ WebWeb of trust” of trust”
� Dave and Bruce swap public keys (in my office)
� Dave and Mark swap public keys (at lunch)
� Dave signs Mark's public key

� Publishes signature on one or more web servers

Using the web of trustUsing the web of trust
� Bruce fetches Mark's public key

� Verifies Dave's signature on it
� Bruce can safely send secret mail to Mark
� Mark can sign mail to Bruce

15-410, S’04- 29 -

PGP “key rings”

Private key ringPrivate key ring
� All of your private keys
� Encrypted with a “pass phrase”

� Should be longer, more random than a password
� If your private keys leak out, you can't easily change them

Public key ringPublic key ring
� Public keys of various people

� Each has one or more signatures
� Some are signed by you – your PGP will use without

complaint

15-410, S’04- 30 -

PGP Messages

Message goalsMessage goals
� Decryptable by a list of people
� Large message bodies decryptable quickly
� Size not proportional to number of receivers

Message structureMessage structure
� One message body, encrypted a symmetric ciper

� Using a random “session” key
� N key packets

� Session key public-key encrypted with one person's key

15-410, S’04- 31 -

Biometrics

ConceptConcept
� Tie authorization to who you are

� Not what you know – can be copied
� Hard to impersonate a retina

� Or a fingerprint

15-410, S’04- 32 -

Biometrics

ConceptConcept
� Tie authorization to who you are

� Not what you know – can be copied
� Hard to impersonate a retina

� Or a fingerprint

Right?Right?

15-410, S’04- 33 -

Biometrics

ConceptConcept
� Tie authorization to who you are

� Not what you know – can be copied
� Hard to impersonate a retina

� Or a fingerprint

Right?Right?

What about gummy bears?What about gummy bears?

15-410, S’04- 34 -

Summary

Many threatsMany threats

Many techniquesMany techniques

“The devil is in the details”“The devil is in the details”

Just because it “works” doesn't mean it's right!Just because it “works” doesn't mean it's right!

Open algorithms, open sourceOpen algorithms, open source

15-410, S’04- 35 -

Further Reading

Kerberos: An Authentication Service for Computer Kerberos: An Authentication Service for Computer
NetworksNetworks
� B. Clifford Neuman, Theodore Ts'o
� USC/ISI Technical Report ISI/RS-94-399

Impact of Artificial "Gummy" Fingers on Fingerprint Impact of Artificial "Gummy" Fingers on Fingerprint
SystemsSystems
� Matsumoto et al
� http://cryptome.org/gummy.htm

