15-410

“..What about gummy bears?...”

Security Applications
Apr. 19, 2004

Dave Eckhardt
Bruce Maggs

L33_Security

15-410, S'04




Synchronization

Hand-in directories have been created
= group-xx/p3extra XOR group-xx/p4

Upcoming lectures — the ECE invasion
= Eno Thereska on advanced disk scheduling
= Joey Echeverria on comparative OS structure

15-410, S'04



Outline

Today

= Warm-up: Password file

= One-time passwords

= Review: private-key, public-key crypto
= Kerberos

= SSL

= PGP

= Biometrics

Disclaimer

= Presentations will be key ideas, not exact protocols

15-410, S'04



Password File

Goal
= User memorizes a small key
= User presents key, machine verifies it

Wrong approach

= Store keys in file

15-410, S'04



Hashed Password File

Better
= Store hash(key)
= User presents key
= Login computes hash(key), verifies

Password file no longer must be secret
= |t doesn't contain keys, only key  hashes

Vulnerable to dictionary attack
= Cracker computes hash(“a”), hash(“b"), ...
= Once computed, works for many users

Can we make the job harder?
- 5-

15-410, S'04



Salted Hashed Password File

Choose random number for each user

Store #, hash(key,#)

User presents key

Login computes hash(typed-key.#) - no harder
Cracker must compute a much larger dictionary
Can we do better?

15-410, S'04



Shadow Salted Hashed Password
File
Protect the password file after all

“Defense in depth” - Cracker must

= Either
= Compute enormous dictionary
= Break system security to get hashed password file
= Scan enormous dictionary

= Or
= Break system security to get hashed password file
= Run dictionary attack on each user in password file

There are probably easier ways into the system
= ...such as bribing a user!

-7 - 15-410, S'04



One-time passwords

What if somebody does eavesdrop?
= Can they undetectably impersonate you forever?

Approach
= System (and user!) store key list

= User presents head of list, system verifies
= User and system destroy that item

Alternate approach

= Portable cryptographic clock (“SecurelD”)
= Sealed box which displays E(time, key)
= Only box, server know key
= User types in display value as a password

15-410, S'04



Private Key

Concept: symmetric cipher
cipher =E( text , Key)
text =E( cipher ,Key)

Good

= Fast, intuitive (password-like), small keys

Bad
= Must share a key (privately!) before talking

Applications
= Bank ATM links, secure telephones

15-410, S'04



Public Key

Concept: asymmetric cipher (aka “magic”)
cipher =E( text , Keyl)
text =D( cipher , Key2)

Keys are different
= Generate key pair
= Publish “public key”
= Keep “private key” very secret

- 10 -

15-410, S'04



Public Key Encryption

Sending secret mail
= |Locate receiver's public key
= Encrypt mail with it

= Nobody can read it
= Not even you!

Receiving secret mail

= Decrypt mail with your private key
= No matter who sent it

-11 - 15-410, S'04



Public Key Signatures

Write a document

Encrypt it with your private key

= Nobody else can do that
Transmit plaintext and ciphertext of document
Anybody can decrypt with your public key

= |f they match, the sender knew your private key
= ...sender was you, more or less

(really: send E(hash(msg), K )

-12 -

15-410, S'04



Public Key Cryptography

Good

= NoO need to privately exchange keys

Bad

= Algorithms are slower than private-key
= Must trust key directory

Applications
= Secret mail, signatures

- 13 -

15-410, S'04



Comparison

Private-key algorithms
= Fast crypto, small keys
= Secret-key-distribution problem

Public-key algorithms
= “Telephone directory” key distribution
= Slow crypto, keys too large to memorize

Can we get the best of both?

- 14 -

15-410, S'04



Kerberos

Goals
= Authenticate & encrypt for N users, M servers
= Fast private-key encryption
= Users remember one small key

Problem

= Private-key encryption requires shared key to
communicate

= Can't have system with NxM keys!

Intuition
= Trusted third party knows single key of every user, server

- 15 - 15-410, S'04



Not Really Kerberos

Client contacts server with a  ticket
= Specifies identity of holder
= Server will use identity for access control checks

= Specifies session key for encryption
= Server will decrypt messages from client
= Also provides authentication — only client can encrypt

= Specifies time of issuance
= Ticket “times out”, client must re-prove it knows its key

- 16 -

15-410, S'04



Not Really Kerberos

Ticket format
= Ticket={client,time,K <aossion }Ks

Observations
= Server knows K ¢, can decrypt & understand the ticket

= Clients can't print tickets, since they don't know K S

= Session key is provided to server via encrypted channel
= Eavesdroppers can't learn session key
= Client-server communication will be secure

How does client get the ticket?
= Only server & Kerberos Distribution Center know K ...

-17 - 15-410, S'04



Not Really Kerberos

Client sends to Key Distribution Center
= “l want a ticket for the printing service”
= {client, server, time}

KDC sends client
= {Kgession Server,timejkK .

= Client can decrypt this to learn session key
= Client knows ticket issue, expiration times

= Ticket={client,time,K < ocsion 1Ks

= Client cannot decrypt ticket
= Client transmits ticket to server as-is

- 18 -

15-410, S'04



Not Really Kerberos

Results (client)

= Client has session key for encryption
= Can trust that only desired server knows it

Results (server)
= Server knows identity of client
= Server knows how long to trust that identity

= Server has session key for encryption
= Any meaningful data which decrypt must be from that client

Overall
= N users, M servers

= System has N+M keys, each entity remembers only one
-19 - 15-410, S'04



Securing a Kerberos Realm

KDC (Kerberos Distribution Center)

Knows all keys in system

Single point of failure
= Ifit's down, clients can't get tickets to contact more servers...

Single point of compromise

VVery delicate to construct & deploy
= Turn off most Internet services
= Maybe boot from read-only media
= Unwise to back up key database to “shelf full of tapes”

Typical approach
= Multiple instances of server (master/slave)

= Deployed in /ocked boxes in machine room
- 20 - 15-410, S04



SSL

Goals
= Fast, secure commnication
= Any client can contact any server on planet

Problems

= There is no single trusted party for the whole planet
= Can't use Kerberos approach

= Solution: public-key cryptography?
= Problem: public key algorithms are slow
= Problem: there is no global public-key directory

- 21 -

15-410, S'04



SSL Approach (Wrong)

Approach
= Use private-key/symmetric encryption for speed

= Swap symmetric session keys via public-key crypto
= Temporary random session keys similar to Kerberos

Steps
= Client looks up server's public key in global directory

= Client generates random symmetric key (e.g., DES)

= Client encrypts DES key using server's public key

= Now client, server both know session key

= Client knows it is talking to the desired server
= After all, nobody else can do the decrypt...

-22 -

15-410, S'04



SSL Approach (Wrong)

Problem
= There is no global key directory

= Would be a single point of compromise
= False server keys enable server spoofing

Approach
= Replace global directory with  chain of trust
= Servers present their own keys to clients
= Keys are signed by “well-known” certifiers

- 23 -

15-410, S'04



Not SSL

Server certificate

= Whoever can decrypt messages encrypted with public key
AAFD01234DE34BEEF997C is www.cmu.edu

Protocol operation
Client calls server, requests certificate

_ 24 -

Server sends certificate

Client generates private-key session key

Client sends {K <acsion K server 10 SEIVEr

If server can decrypt and use K

session » It Must be legit

15-410, S'04



SSL Certificates

How did we know to trust that certificate?

Certificates signed by certificate authorities
= USPS, Visa, Baltimore CyberTrust, CMU

= “Whoever can decrypt messages encrypted with public
key AAFD01234DE34BEEF997C is www.cmu.edu

= Signed, Baltimore CyberTrust”

Signature verification

= Look up public key of Baltimore CyberTrust in global
directory...oops!

Browser vendor ships CA public keys in browser

= “Chain of trust”: Mozilla.org, Baltimore Cybertrust, server
- 25 - 15-410, S’'04



PGP

Goal
= “Pretty Good Privacy” for the masses

= Without depending on a central authority

Approach

= Users generate public-key key pairs
= Public keys stored “on the web”
= Users sign each other's keys

Problem
= How do | frust a public key | get “from the web”?

- 26 -

15-410, S'04



_ 27 -

“On the Web”

PGP key server protocol

= ??7?:. Here is deOu@andrew.cmu.edu's latest public key!
= Server: “Looks good to me!”

= Bruce: What is deOu@andrew.cmu.edu's public key?
= Server: Here are 8 possibilities...decide which to trust!

How do | trust a public key | get “from the web™?

= “Certificate Authority” approach has issues
= They typically charge $50-$1000 per certificate  per year
= They are businesses...governments can lean on them
» ...to present false keys...
» ...to delete your key from their directory...
» ...to refuse to sign your key...

15-410, S'04



PGP

“ Web of trust”
= Dave and Bruce swap public keys (in my office)
= Dave and Mark swap public keys (at lunch)

= Dave signs Mark's public key
= Publishes signature on one or more web servers

Using the web of trust

= Bruce fetches Mark's public key
= Verifies Dave's signature on it

= Bruce can safely send secret mail to Mark
= Mark can sign mail to Bruce

- 28 -

15-410, S'04



PGP “key rings”

Private key ring
= All of your private keys

= Encrypted with a “pass phrase”
= Should be longer, more random than a password
= If your private keys leak out, you can't easily change them

Public key ring

= Public keys of various people
= Each has one or more signatures

= Some are signed by you — your PGP will use without
complaint

- 29 - 15-410, S'04



PGP Messages

Message goals
= Decryptable by a list of people
= Large message bodies decryptable quickly
= Size not proportional to number of receivers

Message structure

= One message body, encrypted a symmetric ciper
= Using a random “session” key

= N key packets
= Session key public-key encrypted with one person's key

- 30 -

15-410, S'04



Biometrics

Concept

= Tie authorization to who you are
= Not what you know — can be copied

= Hard to impersonate a retina
= Or a fingerprint

- 31 -

15-410, S'04



Biometrics

Concept

= Tie authorization to who you are
= Not what you know — can be copied

= Hard to impersonate a retina
= Or a fingerprint

Right?

- 32 -

15-410, S'04



Biometrics

Concept

= Tie authorization to who you are
= Not what you know — can be copied

= Hard to impersonate a retina
= Or a fingerprint

Right?
What about gummy bears?

- 33 -

15-410, S'04



Summary

Many threats

Many techniques

“The devil is in the detalils”

Just because it “works” doesn't mean it's right!
Open algorithms, open source

- 34 -

15-410, S'04



Further Reading

Kerberos: An Authentication Service for Computer
Networks

= B. Clifford Neuman, Theodore Ts'o
= USC/ISI Technical Report ISI/RS-94-399

Impact of Artificial "Gummy" Fingers on Fingerprint
Systems

= Matsumoto et al
= http://cryptome.org/gummy.htm

- 35 -

15-410, S'04



