
15-410, S’04- 1 -

Protection
Apr. 12, 2004

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L31_Protection

15-410
“...1969 > 1999?...”

15-410, S’04- 2 -

Synchronization

Please fill out P3/P4 registration form by midnightPlease fill out P3/P4 registration form by midnight

� On the “Projects” web page

� We need to know whom to grade when...

Debugging is a skill....Debugging is a skill....

15-41215-412

� If this was fun...

� If you want to see how it's done “in real life”,

� If you want to write real OS code used by real people,

� Consider 15-412 (Spring '05)

15-410, S’04- 3 -

Outline

Protection (Chapter 18)Protection (Chapter 18)

� Protection vs. Security

� Domains (Unix, Multics)

� Access Matrix

� Concept, Implementation

� Revocation – not really covered today (see text)

Mentioning EROSMentioning EROS

15-410, S’04- 4 -

Protection vs. Security

Textbook's distinctionTextbook's distinction

� Protection happens inside a computer

� Which parts may access which other parts (how)?

� Security considers external threats

� Is the system's model intact or compromised?

15-410, S’04- 5 -

Protection

GoalsGoals

� Prevent intentional attacks

� “Prove” access policies are always obeyed

� Detect bugs

� “Wild pointer” example

Policy specificationsPolicy specifications

� System administrators

� Users - May want to add new privileges to system

15-410, S’04- 6 -

Objects

HardwareHardware

� Single-use: printer, serial port, CD writer, ...

� Aggregates: CPU, memory, disks, screen

LogicalLogical objects objects

� Files

� Processes

� TCP port 25

� Database tables

15-410, S’04- 7 -

Operations

Depend on objectDepend on object

� CPU: execute(...)

� CD-ROM: read(...)

� Disk: read_sector(), write_sector()

15-410, S’04- 8 -

Access Control

BasicBasic

� Your processes should access only “your stuff”

� Implemented by many systems

Principle of least privilegePrinciple of least privilege

� (text: “need-to-know”)

� cc -c foo.c

� should read foo.c, stdio.h, ...

� should write foo.o

� should not write ~/.cshrc

� This is harder

15-410, S’04- 9 -

Who Can Do What?

access right = (object, operations)access right = (object, operations)

� /etc/passwd, r

� /etc/passwd, r/w

process process → → protection domainprotection domain

� P0 → de0u, P1 → bmm, ...

protection domain protection domain →→ list of access rights list of access rights

� de0u → (/etc/passwd, r), (/afs/andrew/usr/de0u/.cshrc, w)

15-410, S’04- 10 -

Protection Domain Example

Domain 1Domain 1

� /dev/null, read/write

� /usr/davide/.cshrc, read/write

� /usr/smuckle/.cshrc, read

Domain 2Domain 2

� /dev/null, read/write

� /usr/smuckle/.cshrc, read/write

� /usr/davide/.cshrc, read

15-410, S’04- 11 -

Protection Domain Usage

Least privilege requires Least privilege requires domain changesdomain changes

� Doing different jobs requires different privileges

� One printer daemon, N users

� Print each user's file with minimum necessary privileges...

Two general approachesTwo general approaches

� “process → domain” mapping constant

� Requires domains to add and drop privileges

� User “printer” gets, releases permission to read your file

� Domain privileges constant

� Processes domain-switch between high-privilege, low-
privilege domains

� Printer process opens file as you, opens printer as “printer”

15-410, S’04- 12 -

Protection Domain Models

Three modelsThree models

� Domain = user

� Domain = process

� Domain = procedure

15-410, S’04- 13 -

Domain = User

Object permissions depend on Object permissions depend on who you arewho you are

All processes you are running share privilegesAll processes you are running share privileges

Domain switch = Log off, log onDomain switch = Log off, log on

15-410, S’04- 14 -

Domain = Process

Resources managed by special processesResources managed by special processes

� Printer daemon, file server process, ...

Domain switchDomain switch

� Objects cross domain boundaries via IPC

� “Please send these bytes to the printer” (pieces missing)
 s = socket(AF_UNIX, SOCK_STREAM, 0);

 connect(s, pserver, sizeof pserver);

 mh->cmsg_type = SCM_RIGHTS;

 mh->cmsg_len[0] = open(“/my/file”, 0, 0);

 sendmsg(s, &mh, 0);

15-410, S’04- 15 -

Domain = Procedure

Processor limits access at fine grainProcessor limits access at fine grain

� Hardware protection on a per-variable basis!

Domain switch – Domain switch – Inter-domain procedure callInter-domain procedure call

� nr = print(strlen(buf), buf);

� “The correct domain” for print()

� Access to OS's data structures

� Permission to call OS's internal putbytes()

� Permission to read user's buf

� Ideally, correct domain automatically created by hardware

� Common case: “user mode” vs. “ kernel mode”

15-410, S’04- 16 -

Unix “setuid” concept

Assume Unix domain = numeric user idAssume Unix domain = numeric user id

� Not the whole story! This overlooks:

� Group id, group vector

� Process group, controlling terminal

� Superuser

� But let's pretend

Domain switch via Domain switch via setuid executablesetuid executable

� Special permission bit set with chmod

� Meaning: exec() changes uid to executable file's owner

� Gatekeeper programs

� “lpr” run by anybody can access printer's queue files

15-410, S’04- 17 -

Access Matrix Concept

ConceptConcept

� Formalization of “who can do what”

Basic ideaBasic idea

� Store all permissions in a matrix

� One dimension is protection domains

� Other dimension is objects

� Entries are access rights

15-410, S’04- 18 -

Access Matrix Concept

File1 File2 File3 Printer

rwxd rD1

r rwxd wD2

rwxd rwxd rwxd wD3

r r rD4

15-410, S’04- 19 -

Access Matrix Details

OS must still define process OS must still define process → → domain mapping domain mapping

OS must enforce domain-switching rulesOS must enforce domain-switching rules

� Ad-hoc approach

� Special domain-switch rules (e.g., log off/on)

� Can encode domain-switch in access matrix!

� Switching domains is a privilege like any other...

� Add domain columns (domains are objects)

� Add switch-to rights to domain objects
» “D2 processes can switch to D1 at will”

� Subtle (dangerous)

15-410, S’04- 20 -

Adding “Switch-Domain” Rights

File1 File2 File3 D1

rwxd rD1

r rwxd sD2

rwxd rwxd rwxdD3

r r rD4

15-410, S’04- 21 -

Updating the Matrix

Ad-hoc approachesAd-hoc approaches

� “System administrator” can update matrix

Matrix approachMatrix approach

� Add copy rights to objects

� Domain D1 may copy read rights for File2

� So D1 can give D2 the right to read File2

15-410, S’04- 22 -

Adding Copy Rights

File1 File2 File3

rwxdR rD1

r rwxdD2

rwxd rwxd rwxdD3

r r rD4

15-410, S’04- 23 -

Adding Copy Rights

File1 File2 File3

rwxdR rD1

r r rwxdD2

rwxd rwxd rwxdD3

r r rD4

15-410, S’04- 24 -

Updating the Matrix

Add Add owner rightsowner rights to objects to objects

� D1 has owner rights for O47

� D1 can modify the O47 column at will

� Can add, delete rights to O47 from all other domains

Add Add control rightscontrol rights to domain objects to domain objects

� D1 has control rights for D2

� D1 can modify D2's rights to any object

� D1 may be teacher, parent, ...

15-410, S’04- 25 -

Access Matrix Implementation

Implement matrix via matrix?Implement matrix via matrix?

� Huge, messy, slow

VeryVery clumsy for... clumsy for...

� “world readable file”

� Need one entry per domain

� Must fill rights in when creating new domain

� “private file”

� Lots of blank squares
» Can Alice read the file? - No
» Can Bob read the file? - No
» ...

Two options – “ACL” , “capabilities”Two options – “ACL” , “capabilities”

15-410, S’04- 26 -

Access Control List

File1

D1

rD2

rwxdD3

rD4

15-410, S’04- 27 -

Access Control List (ACL)

List per matrix column (object)List per matrix column (object)

� de0u, read; bmm, read+write

Naively, domain = userNaively, domain = user

AFS ACLsAFS ACLs

� domain = user, user:group, system:anyuser, machine list
(system:campushost)

� positive rights, negative rights

� de0u:staff rlid

� mberman -id

Doesn't really do Doesn't really do least privilegeleast privilege

� System stores many privileges per user, permanently...

15-410, S’04- 28 -

Capability List

File1 File2 File3

rwxdR rD1

15-410, S’04- 29 -

Capability Lists

CapabilityCapability Lists Lists

� List per matrix row (domain)

� Naively, domain = user

� Typically, domain = process

Permit Permit least privilegeleast privilege

� Domains can transfer & forget capabilities

� Bootstrapping problem

� Who gets which rights at boot?

� Who gets which rights at login?

� Typical solution: store capabilities in files somehow

15-410, S’04- 30 -

Mixed Approach

Permanently store ACL for each filePermanently store ACL for each file

� Must get ACL from disk to access file

� May be long, complicated process

open() checks ACL, creates capabilityopen() checks ACL, creates capability

� Records access rights for this process

� Quick verification on each read(), write()

� Per-process capability lists cache ACL results

15-410, S’04- 31 -

Internal Protection?

UnderstoodUnderstood

� Which user process should be allowed to access what?

� Job performed by OS

� How to protect OS code, data from user processes

� Hardware user/kernel boundary

Can we do better?Can we do better?

� Can we protect parts of the OS from other parts?

15-410, S’04- 32 -

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program

15-410, S’04- 33 -

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program

Smaller
Simpler

More Critical

15-410, S’04- 34 -

Traditional OS Layers

Disk Device Driver

Page System

File System

Print Queue

User Program
Equally

Trusted!!

Wild Pointer
Access

15-410, S’04- 35 -

Multics Approach

Trust hierarchyTrust hierarchy

Small “simple” very-trusted Small “simple” very-trusted kernelkernel

� Main job: access control

� Goal: “prove” it correct

Privilege layers (nested “ rings”)Privilege layers (nested “ rings”)

� Ring 0 = kernel, “ inside” every other ring

� Ring 1 = operating system core

� Ring 2 = operating system services

� ...

� Ring 7 = user programs

15-410, S’04- 36 -

Multics Ring Architecture

Segmented virtual address spaceSegmented virtual address space

� One segment per software module

� “Print” may contain

	 Entry points
» list_printers(), list_queue(), enqueue(), ...

	 Data area
» List of printers, accounting data, queues

 Segment = file (segments persist across reboots)

Access checked by hardwareAccess checked by hardware

 Which procedures can you call?

 Is access to that segment's data legal?

15-410, S’04- 37 -

Multics Rings

File System
Page Store

Disk

Kernel
Wild Pointer

Access

 Fault

15-410, S’04- 38 -

Multics Domain Switching

CPU has CPU has current ring numbercurrent ring number register register

 Current privilege leval, 0..7

Segment descriptors includeSegment descriptors include

 Ring number

 Access bracket [min, max]

	 Segment “appears in” ring min...ring max

 Access bits (read, write, execute)

 Entry limit

 List of gates (procedure entry points)

15-410, S’04- 39 -

Multics Domain Switching

Every procedure call is a potential domain switchEvery procedure call is a potential domain switch

Calling a procedure at current privilege levelCalling a procedure at current privilege level

 Just call it

Calling a more-privileged procedureCalling a more-privileged procedure

 Make sure entry point is legal

 Enter more-privileged mode

 It can read, write all of our data

Calling a less-privileged procedureCalling a less-privileged procedure

 We want to show it some of our data

 We don't want it to modify our data

15-410, S’04- 40 -

Multics Domain Switching

min <= current-ring <= maxmin <= current-ring <= max

 Procedure is “part of” rings 2..4

 We are executing in ring 3

 Standard procedure call

15-410, S’04- 41 -

Multics Domain Switching

current-ring > maxcurrent-ring > max

 Calling a more-privileged procedure

 It can do whatever it wants to us

 Trap to ring 0

 Check current-ring < entry-limit

	 User code may be forbidden to call ring 0 directly

 Check call address is a legal entry point

 Set current-ring to segment-ring

 Run procedure call

15-410, S’04- 42 -

Multics Domain Switching

Current-ring < minCurrent-ring < min

 Calling a less-privileged procedure

 Trap to ring 0

 Copy “privileged” procedure call parameters

	 Must be in low-privilege area for callee to access

 Set current-ring to segment-ring

 Run procedure call

15-410, S’04- 43 -

Multics Ring Architecture

Does this look familiar?Does this look familiar?

BenefitsBenefits

� Core security policy small, centralized

� Damage limited vs. Unix “superuser” ' model

ConcernsConcerns

� Hierarchy conflicts with least privilege

� Requires specific hardware

� Performance (maybe)

15-410, S’04- 44 -

More About Multics

Back to the future (1969!)Back to the future (1969!)

� Symmetric multiprocessing

� Hierarchical file system (access control lists)

� Memory-mapped files

� Hot-pluggable CPUs, memory, disks

Significant influence on UnixSignificant influence on Unix

� Ken Thompson was a Multics contributor

www.multicians.orgwww.multicians.org

15-410, S’04- 45 -

Mentioning EROS

Text mentions Hydra, CAPText mentions Hydra, CAP

� Late 70's, early 80's

� Dead

EROS (“Extremely Reliable Operating System”)EROS (“Extremely Reliable Operating System”)

� UPenn, Johns Hopkins

� Based on commercial GNOSIS/KeyKOS OS

� www.eros-os.org

15-410, S’04- 46 -

EROS Overview

“Pure capability” system“Pure capability” system

� “ACLs considered harmful”

“Pure principle system”“Pure principle system”

� Don't compromise principle for performance

Aggressive performance goalAggressive performance goal

� Domain switch ~100X procedure call

Unusual approach to bootstrapping problemUnusual approach to bootstrapping problem

� Persistent processes!

15-410, S’04- 47 -

Persistent Processes

No such thing as rebootNo such thing as reboot

Processes last “ forever” (until exit)Processes last “ forever” (until exit)

OS kernel checkpoints system state to diskOS kernel checkpoints system state to disk

� Memory & registers defined as cache of disk state

Restart restores system state into hardwareRestart restores system state into hardware

“Login” “Login” reconnectsreconnects you to your processes you to your processes

15-410, S’04- 48 -

EROS Objects

Disk pagesDisk pages

� capabilities: read/write, read-only

Capability nodesCapability nodes

� Arrays of capabilities

NumbersNumbers

� Protected capability ranges

� “Disk pages 0...16384”

Process – executable nodeProcess – executable node

15-410, S’04- 49 -

EROS Revocation Stance

ReallyReally revoking access is hard revoking access is hard

� The user could have copied the file

Don't give out real capabilitiesDon't give out real capabilities

� Give out proxy capabilities

� Then revoke however you wish

15-410, S’04- 50 -

EROS Quick Start

www.eros-os.org/www.eros-os.org/

� reliability/paper.html

� essays/

� capintro.html

� wherefrom.html

� ACLSvCaps.html

15-410, S’04- 51 -

Concept Summary

ObjectObject

 Operations

DomainDomain

 Switching

CapabilitiesCapabilities

 Revoking is hard, see text

“Protection” vs. “security”“Protection” vs. “security”

 Protection is what our sysadmin hopes is happening...

