15-410

“..Does this look familiar?...”

File System (Internals)
Mar. 31, 2004

Dave Eckhardt
Bruce Maggs

L26_Filesystem

15-410, S’04

Synchronization

Project 3 status
= Several groups skipped Checkpoint 3 (the easiest one!)
= Not everybody took advantage of opportunity to p/an
= Several groups seem on track to finish early

= Several groups dangerously close to the “90% problem”
= First 90% of the work takes the first 90% of the time
= Last 10% of the work takes the second 90% of the time

We want everybody to finish!
= Project 3 is the core experience of the class
= Can't bury it and move on!

0. 15-410, S'04

Synchronization

Project 3 / Project 4 “hurdle” test suite
= Released this week

= Two sections
= Basic tests, solidity tests

At P3 deadline, you will run the tests
= Goal: pass ~80% of each section
= Register to begin Project 4 (some P3 extensions)

Not passing the hurdle?
= Extra week to work on P3
= Cannot submit P4, grade will be 0%

15-410, S’04

Synchronization

Today
= Chapter 12 (not: Log-structured, NFS)

15-410, S’04

Outline

File system code layers (abstract)
Disk, memory structures

Unix “VFS” layering indirection
Directories

Block allocation strategies, free space
Cache tricks

Recovery, backups

15-410, S'04

File System Layers

Device drivers
= read/write(disk, start-sector, count)

Block I/O

= read/write(partition, block) [cached]

File /O

= read/write (file, block)

File system
= manage directories, free space

15-410, S'04

File System Layers

Multi-filesystem namespace
= Partitioning, names for devices
= Mounting
= Unifying multiple file system fypes
= UFS, ext2fs, ext3fs, reiserfs, FAT, 9660, ...

_7 15-410, S'04

Shredding Disks

Split disk into partitions/slices/minidisks/...
- PC: 4 “partitions” — Windows, FreeBSD, Plan 9
- Mac: “volumes” — OS 9, OS X, system vs. user data

Or: glue disks together into volumes/logical disks

Partition may contain...
- Paging area
* Indexed by in-memory structures
* “random garbage” when OS shuts down
- File system
* Block allocation: file # = block list
* Directory: name = file #

- 15-410, S'04

Disk Structures

Boot area (first block/track/cylinder)
= Interpreted by hardware bootstrap (“BIOS”)
= May include partition table

File system control block
= Key parameters: #blocks, metadata layout
= Unix: “superblock”

“File control block” (Unix: “inode”)
= owhership/permissions
= data location

15-410, S’04

Memory Structures

In-memory partition tables
= Sanity check file system 1/O in correct partition

Cached directory information

System-wide open-file table
= In-memory file control blocks

Process open-file tables
= Open mode (read/write/append....)
= “Cursor” (read/write position)

- 10 -

15-410, S’04

VFS layer

Goal
= Allow one machine to use multiple file system types
= Unix FFS
= MS-DOS FAT

= CD-ROM IS09660
= Remote/distributed: NFS/AFS

= Standard system calls should work transparently

Solution
= |nsert a level of indirection!

- 11 - 15-410, S’04

Single File System

15-410, S’04

VFS “Virtualization”

procfs_read/()

procfs_domem ()

_ 13-

15-410, S’04

VFS layer — file system
operations

struct visops {

char *name;
int (*vfs_mount) () ;
int (*vfs _statfs) ();
int (*vis_vget) (
(

)
) ;
int (*vifs_unmount) () ;

_14 -

15-410, S’04

VFS layer — file operations

Each VFS provides an array of methods
VOP_LOOKUP(vhode, new_vnode, name)
VOP_CREATE(vnode, new_vnode, name, attributes)
VOP_OPEN(vnode, mode, credentials, process)
VOP_READ(vnode, uio, readwrite, credentials)

Operating system provides fs-independent code
= Validating system call parameters
= Moving data from/to user memory
= Thread sleep/wakeup
= Caches (data blocks, name = inode mappings)

- 15 - 15-410, S'04

Directories

External interface
= vhode2 = lookup(vhode1, name)

Traditional Unix FFS directories
= List of (hame,inode #) - not sorted!
= Names are variable-length

= Lookup is linear
= How long does it take to delete N files?

Common alternative: hash-table directories

_ 16 -

15-410, S’04

Allocation / Mapping

Allocation problem
= Where do | put the next block of this file?
= Near the previous block?

Mapping problem
= Where is block 32 of this file?

= Similar to virtual memory
= Multiple large “address spaces” specific to each file
= Only one underlying “address space” of blocks
= Source address space may be sparse!

-17 - 15-410, S'04

Allocation — Contiguous

Approach

= File location defined as (start, length)

Motivation
= Sequential disk accesses are cheap
= Bookkeeping is easy

Issues
= Dynamic storage allocation (fragmentation, compaction)
= Must pre-declare file size at creation

- 18 - 15-410, S'04

Allocation — Linked

Approach
= File location defined as (start)
= Each disk block contains pointer to next

Motivation
= Avoid fragmentation problems
= Allow file growth

Issues?

- 19 -

15-410, S'04

Allocation — Linked

Issues
= 508-byte blocks don't match memory pages
= In general, one seek per block read/written - slow!

= Very hard to access file blocks at random
= [seek(fd, 37 * 1024, SEEK_SET);

Benefit
= Can recover files even if directories destroyed

Common modification
= Linked multi-block clusters, not blocks

-20 - 15-410, S'04

Allocation — FAT

Used by MS-DOS, 0S/2, Windows

= Digital cameras, GPS receivers, printers, PaimOS, ...
Semantically same as linked allocation

Links stored “out of band” in table
= Result: nice 512-byte sectors for data

Table at start of disk

= Next-block pointer array
= Indexed by block number
= Next=0 means “free”

-21 - 15-410, S’04

Allocation — FAT

-2 -

15-410, S’04

Allocation - FAT

_23 .

15-410, S’04

Allocation - FAT

_24 -

15-410, S’04

Allocation - FAT

hello.jav: 0, 7

- 25 - 15-410, S’04

Allocation — FAT

Issues

= Damage to FAT scrambles entire disk
= Solution: backup FAT

= Generally fwo seeks per block read/write
= Seek to FAT, read, seek to actual block (repeat)
= Unless FAT can be cached

= Still very hard to access random file blocks
= Linear time to walk through FAT

_ 96 -

15-410, S’04

Allocation — Indexed

Motivation

= Avoid fragmentation
problems

= Allow file growth
= Improve random access

Approach

= Per-file block array

_07 -

15-410, S’04

Allocation — Indexed

Allows “holes”
= foo.c is sequential

= foo.db, blocks 1..3 = -1
= logically “blank”

“sparse allocation”
= a.k.a. “holes”
= read() returns nulls
= write() requires alloc
= file “size” file “size”
= s -l
= Is -s

_08 -

foo.c foo.db

15-410, S’04

Allocation — Indexed

How big should index block be?
= Too small: limits file size
= Too big: lots of wasted pointers

Combining index blocks
= Linked
= Multi-level
= What Unix actually does

_29 .

15-410, S’04

Linked Index Blocks

Last pointer indicates

next index block

Simple

Access is not-so-random

-30 -

= O(n/c) is still O(n)
= O(n) disk transfers

15-410, S’04

Multi-Level Index Blocks

Index blocks of indeXx
blocks

Does this look familiar?
Allows big holes

_31 -

15-410, S’04

Unix Index Blocks

Intuition

= Many files are small
= Length =0, length = 1, length < 80, ...

= Some files are huge (3 gigabytes)

“Clever heuristic” in Unix FFS inode

= 12 (direct) block pointers: 12 * 8 KB = 96 KB
= Availability is “free” - you need inode to open() file anyway

= 3 indirect block pointers
= single, double, triple

-32 - 15-410, S'04

Unix Index Blocks

25

26

277

28

-33 -

15 19 21
16 20 22
17
2
;_[_-" :
500
1000 501 -}
502

29

30

31

32

15-410, S’04

Unix Index Blocks

_34 -

—Direct blocks

—ndirect pointer

—) 0 LIble-indirect

—Triple-indirect

15-410, S’04

Unix Index Blocks

_135.-

15

16

19

20

17

18

15-410, S’04

Unix Index Blocks

_136 -

15

16

19

21

17

;—l’

22

23

18
500 rJ
-1

24

15-410, S’04

Unix Index Blocks

-37 -

1

19

20

21

5
6
7
8
0

501 .

22

25

26

23

277

28

1000=p-

502

29

30

31

32

15-410, S’04

Tracking Free Space

Bit-vector
= 1 bit per block: boolean “free”
= Check each word vs. 0
= Use “first bit set” instruction

= Text example
= 1.3 GB disk, 512 B sectors: 332 KB bit vector

Need to keep (much of) it in RAM

_38 -

15-410, S’04

Tracking Free Space

Linked list

= Superblock points to first free block
= Each free block points to next

Cost to allocate N blocks is linear

= Free block can point to multiple free blocks
= 512 bytes = 128 4-byte block numbers

= FAT approach provides free-block list “for free”

Keep free-extent lists
= (block,sequential-block-count)

-39

15-410, S’04

Unified Buffer Cache

Some memory frames back virtual pages
Some memory frames cache file blocks

Would be silly to double-cache vmem pages

= Page cache, file-system cache often totally independent
= Page cache chunks according to hardware page size
= File cache chunks accoding to “file system block” size
= Different code, different RAM pools

Observation
= How much RAM to devote to each one?

= Why not have just one cache?

= Mix automatically varies according to load

_40 - 15-410, S'04

Cache tricks

Read-ahead
for (1 = 0; 1 < filesize; ++1)
putc(getc(infile), outfile);

= System observes sequential reads
= can pipeline reads to overlap “computation”, read latency

Free-behind

= Discard buffer from cache when next is requested
= Good for large files
= “Anti-LRU”

-41 - 15-410, S’04

Recovery

System crash...now what?
= Some RAM contents were lost
= Free-space list on disk may be wrong

= Scan file system
= Check invariants
» Unreferenced files
» Double-allocated blocks
» Unallocated blocks
= Fix problems
» Expert user???

_4D -

15-410, S’04

Backups

Incremental approach
= Monthly: dump entire file system
= Weekly: dump changes since last monthly
= Daily: dump changes since last weekly

Merge approach - www.teradactyl.com

= Collect changes since yesterday
= Scan file system by modification time

= Two tape drives merge yesterday's tape, today's delta

_43 - 15-410, S'04

Summary

Block-mapping problem
= Similar to virtual-to-physical mapping for memory

= Large, often-sparse “address” spaces
= “Holes” not the common case, but not impossible

= Map any “logical address” to any “physical address”
= Key difference: file maps often don't fit in memory

“Insert a level of indirection”
= Multiple file system types on one machine
= Grow your block-allocation map

_44 - 15-410, S'04

