
15-410, S’04- 1 -

Virtual Memory #2
Mar. 1, 2004

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L19_VM2

15-410
“...The only way to win is not to play...”

15-410, S’04- 2 -

Synchronization

Checkpoint 1Checkpoint 1

� Wednesday 23:59

Final Exam list postedFinal Exam list posted

� You must notify us of conflicts in a timely fashion

15-410, S’04- 3 -

Last Time

Mapping problem: logical vs. physical addressesMapping problem: logical vs. physical addresses

Contiguous memory mapping (base, limit)Contiguous memory mapping (base, limit)

Swapping – taking turns in memorySwapping – taking turns in memory

PagingPaging

� Array mapping page numbers to frame numbers

� Observation: typical table is sparsely occupied

� Response: some sparse data structure (e.g., 2-level array)

TLB – cache of virtual TLB – cache of virtual ⇒⇒ physical mappings physical mappings

Software-loaded TLBSoftware-loaded TLB

15-410, S’04- 4 -

Swapping

Multiple user processesMultiple user processes

� Sum of memory demands > system memory

� Goal: Allow each process 100% of system memory

Take turnsTake turns

� Temporarily evict process(es) to disk

� “Swap daemon” shuffles process in & out

� Can take seconds per process

� Creates external fragmentation problem

15-410, S’04- 5 -

External Fragmentation (“Holes”)

Process 3

Process 4

Process 1

OS Kernel

Process 2

Process 3

Process 4Process 1

OS Kernel

Process 2

15-410, S’04- 6 -

Benefits of Paging

Process growth problemProcess growth problem

� Any process can use any free frame for any purpose

Fragmentation compaction problemFragmentation compaction problem

� Process doesn't need to be contiguous

Long delay to swap a whole processLong delay to swap a whole process

� Swap part of the process instead!

15-410, S’04- 7 -

Partial Residence

P0 code 0

OS Kernel

[free]
P0 data 0
P1 data 0
P1 stack 0
P0 stack 0
P1 data 1

[free]

P0 code 0
P0 code 1
P0 data 0
P0 stack 0

P1 code 0
P1 data 0
P1 data 1
P1 stack 0

15-410, S’04- 8 -

Page Table Entry (PTE) flags

Protection bits – set by OSProtection bits – set by OS

� Read/write/execute

Valid/Present bit – set by OSValid/Present bit – set by OS

� Frame pointer is valid, no need to fault

Dirty bitDirty bit

� Hardware sets 0⇒1 when data stored into page

� OS sets 1⇒0 when page has been written to disk

Reference bitReference bit

� Hardware sets 0⇒1 on any data access to page

� OS uses for page eviction (below)

15-410, S’04- 9 -

Outline

Partial memory residence (demand paging) in actionPartial memory residence (demand paging) in action

The task of the page fault handlerThe task of the page fault handler

Big speed hacksBig speed hacks

Sharing memory regions & filesSharing memory regions & files

Page replacement policiesPage replacement policies

15-410, S’04- 10 -

Partial Memory Residence

Error-handling code not used by every runError-handling code not used by every run

� No need for it to occupy memory for entire duration...

Tables may be allocated larger than usedTables may be allocated larger than used
player players[MAX_PLAYERS];

Can run Can run veryvery large programs large programs

� Much larger than physical memory

� As long as “active” footprint fits in RAM

� Swapping can't do this

Programs can launch fasterPrograms can launch faster

� Needn't load whole program before running

15-410, S’04- 11 -

Demand Paging

Use RAM frames as a cache for the set of all pagesUse RAM frames as a cache for the set of all pages

Page tables indicate which pages are residentPage tables indicate which pages are resident

� Non-resident pages have “present=0” in page table entry

� Memory access referring to page generates page fault

� Hardware invokes page fault exception handler

15-410, S’04- 12 -

Page fault - Why?

Address is invalid/illegal – deliver Address is invalid/illegal – deliver software exceptionsoftware exception

� Unix – SIGSEGV

� Mach – deliver message to thread's exception port

� 15-410 – kill thread

Process is growing stack – give it a new frameProcess is growing stack – give it a new frame

“Cache misses” - fetch from disk“Cache misses” - fetch from disk

� Where?

15-410, S’04- 13 -

Satisfying Page Faults

code

data

bss

stack

Filesystem

Paging Space

Free-frame pool

15-410, S’04- 14 -

Page fault story - 1

Process issues memory referenceProcess issues memory reference

� TLB: miss (right?)

� PT: “not present”

TrapTrap to OS kernel! to OS kernel!

� Dump trap frame

� Transfer via “page fault” interrupt descriptor

� Run trap handler

15-410, S’04- 15 -

Page fault story – 2

Classify fault address: legal/illegalClassify fault address: legal/illegal

Code/rodata region of executable?Code/rodata region of executable?

� Determine which sector of executable file

� Launch read() into a blank frame

Previously resident, paged outPreviously resident, paged out

� “somewhere on the paging partition”

� Queue disk read into a blank frame

First use of bss/stack pageFirst use of bss/stack page

� Allocate a zero frame, insert into PT

15-410, S’04- 16 -

Page fault story – 3

Put process to sleep (for most cases)Put process to sleep (for most cases)

� Switch to running another

Handle I/O-complete interruptHandle I/O-complete interrupt

� Fill in PTE (present = 1)

� Mark process runnable

Restore registers, switch page tableRestore registers, switch page table

� Faulting instruction re-started transparently

� Single instruction may fault more than once!

15-410, S’04- 17 -

Memory Regions vs. Page Tables

What's a poor page fault handler to do?What's a poor page fault handler to do?

� Kill process?

� Copy page, mark read-write?

� Fetch page from file? Which? Where?

Page Table not a good data structurePage Table not a good data structure

� Format defined by hardware

� Per-page nature is repetitive

� Not enough bits to encode OS metadata

� Disk sector address can be > 32 bits

15-410, S’04- 18 -

Dual-view Memory Model

LogicalLogical

� Process memory is a list of regions

� “Holes” between regions are illegal addresses

� Per-region methods

� fault(), evict(), unmap()

PhysicalPhysical

� Process memory is a list of pages

� Faults delegated to per-region methods

� Many “ invalid” pages can be made valid

� But sometimes a region fault handler returns “error”
» Handle as with “hole” case above

15-410, S’04- 19 -

Page-fault story (for real)

Examine fault addressExamine fault address

Look up: address Look up: address ⇒⇒ region region

region->fault(addr, access_mode)region->fault(addr, access_mode)

� Quickly fix up problem

� Or put process to sleep, run scheduler

15-410, S’04- 20 -

Demand Paging Performance

Effective access timeEffective access time of memory word of memory word

� (1 – p
miss

) * Tmemory + p
miss

 * Tdisk

Textbook exampleTextbook example

� Tmemory 100 ns

� Tdisk 25 ms

� p
miss

 = 1/1,000 slows down by factor of 250

� slowdown of 10% needs p
miss

 < 1/2,500,000

15-410, S’04- 21 -

Copy-on-Write

fork() produces two fork() produces two veryvery-similar processes-similar processes

� Same code, data, stack

Expensive to copy pagesExpensive to copy pages

� Many will never be modified by new process

� Especially in fork(), exec() case

ShareShare physical frames instead of copying? physical frames instead of copying?

� Easy: code pages – read-only

� Dangerous: stack pages!

15-410, S’04- 22 -

Copy-on-Write

SimulatedSimulated copy copy

� Copy page table entries to new process

� Mark PTEs read-only in old & new

� Done! (saving factor: 1024)

Making it realMaking it real

� Process writes to page (oops!)

� Page fault handler responsible

� Copy page into empty frame

� Mark read-write in both PTEs

15-410, S’04- 23 -

Example Page Table

Virtual Address
stack

code

data

Page table

f029VRW
f237VRX

f981VRW

15-410, S’04- 24 -

Copy-on-Write of Address Space

stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

P0

P9

f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

15-410, S’04- 25 -

Memory Write ⇒ Permission Fault

stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

P0

P9

f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

15-410, S’04- 26 -

Copy Into Blank Frame

stack
stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

P0

P9

f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

15-410, S’04- 27 -

Adjust PTE frame pointer, access

stack
stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRW

P0

P9

f029VRWWWWWWWWW
f237VRX

f981VRW

15-410, S’04- 28 -

Zero pages

Very special case of copy-on-writeVery special case of copy-on-write

Many process pages are “blank”Many process pages are “blank”

� All of bss

� New heap pages

� New stack pages

Have one Have one system-widesystem-wide all-zero page all-zero page

� Everybody points to it

� Logically read-write, physically read-only

� Reads are free

� Writes cause page faults & cloning

15-410, S’04- 29 -

Memory-Mapped Files

Alternative interface to read(),write()Alternative interface to read(),write()

� mmap(addr, len, prot, flags, fd, offset)

� new memory region presents file contents

� write-back policy typically unspecified

BenefitsBenefits

� Avoid serializing pointer-based data structures

� Reads and writes may be much cheaper

� Look, Ma, no syscalls!

15-410, S’04- 30 -

Memory-Mapped Files

ImplementationImplementation

� Memory region remembers mmap() parameters

� Page faults trigger read() calls

� Pages stored back via write() to file

Shared memoryShared memory

� Two processes mmap() “ the same way”

� Point to same memory region

15-410, S’04- 31 -

Page Replacement/Page Eviction

Process always want Process always want moremore memory frames memory frames

� Explicit deallocation is rare

� Page faults are implicit allocations

System inevitably runs out of framesSystem inevitably runs out of frames

SolutionSolution

� Pick a frame, store contents to disk

� Transfer ownership to new process

� Service fault using this frame

15-410, S’04- 32 -

Pick a Frame

Two-level approachTwo-level approach

� Determine # frames each process “deserves”

� “Process” chooses which frame is least-valuable

System-wide approachSystem-wide approach

� Determine globally-least-useful frame

15-410, S’04- 33 -

Store Contents to Disk

Where does it belong?Where does it belong?

� Allocate backing store for each page

� What if we run out?

Must we Must we reallyreally store it? store it?

� Read-only code/data: no!

� Can re-fetch from executable

� Saves paging space & disk-write delay

� File system read() may be slower than paging-disk read

� Not modified since last page-in: no!

� Hardware typically provides “page-dirty” bit in PTE

15-410, S’04- 34 -

Page Eviction Policies

Don't try these at homeDon't try these at home

� FIFO

� Optimal

� LRU

PracticalPractical

� LRU approximation

15-410, S’04- 35 -

FIFO Page Replacement

ConceptConcept

� Page queue

� Page added to queue when first allocated

� Always evict oldest page (head of queue)

EvaluationEvaluation

� Cheap

� Stupid

� May evict old unused startup-code page

� But guaranteed to evict process's favorite page too!

15-410, S’04- 36 -

Optimal Page Replacement

ConceptConcept

� Evict whichever page will be referenced latest

� Buy the most time until next page fault

EvaluationEvaluation

� Requires perfect prediction of program execution

� Impossible to implement

So?So?

� Used as upper bound in simulation studies

15-410, S’04- 37 -

LRU Page Replacement

ConceptConcept

� Evict least-recently-used page

� “Past performance may not predict future results”

EvaluationEvaluation

� Would work well

� LRU is computable without fortune teller

� Bookkeeping very expensive

� Hardware must sequence-number every page reference!

15-410, S’04- 38 -

Approximating LRU

Hybrid hardware/software approachHybrid hardware/software approach

� 1 reference bit per page table entry

� OS sets reference = 0 for all pages

� Hardware sets reference=1 when PTE is used

� OS periodically scans

� reference == 1 ⇒ “ recently used”

“Second-chance” (aka “clock”) algorithm“Second-chance” (aka “clock”) algorithm

� Use stupid FIFO to choose victim pages

� Skip victims with reference == 1 (somewhat-recently used)

15-410, S’04- 39 -

Clock Algorithm

static int nextpage = 0;

boolean reference[NPAGES];

int choose_victim() {

 while (reference[nextpage])

 reference[nextpage] = false;

 nextpage = (nextpage+1) % NPAGES;

 return(nextpage);

}

15-410, S’04- 40 -

Page Buffering

ProblemProblem

� Don't want to evict pages only when there is a fault

� Must wait for disk write before launching disk read

“Assume a blank page...”“Assume a blank page...”

� Page fault handler can be fast

“page-out daemon”“page-out daemon”

� Scan system for dirty pages

� Write to disk

� Clear dirty bit

� Page can be instantly declared blank later

15-410, S’04- 41 -

Frame Allocation

How many frames should a process have?How many frames should a process have?

MinimumMinimum

� Examine worst-case instruction

� Can multi-byte instruction cross page boundary?

� Can memory parameter cross page boundary?

� How many memory parameters?

� Indirect pointers?

15-410, S’04- 42 -

Frame Allocation

EqualEqual

	 Every process gets same # frames

� “Fair”

� Probably wasteful

ProportionalProportional

	 Larger processes get more frames

� Probably the right approach

� Encourages greediness

15-410, S’04- 43 -

Thrashing

ProblemProblem

	 Process needs N pages

	 OS provides N-1, N/2, etc.

ResultResult

	 Every page OS evicts generates “ immediate” fault

	 More time spent paging than executing

	 Paging disk constantly busy

 Denial of “paging service” to other processes

15-410, S’04- 44 -

Working-Set Model

ApproachApproach

	 Determine necessary # pages

	 If unavailable, start swapping

How to measure?How to measure?

	 Periodically scan process reference bits

	 Combine multiple scans (see text)

EvaluationEvaluation

	 Expensive

15-410, S’04- 45 -

Page-Fault Frequency

ApproachApproach

	 Thrashing == “excessive” paging

	 Adjust per-process frame quotas to balance fault rates

 Fault rate “ too low” : reduce frame quota

 Fault rate “ too high” : increase frame quota

What if quota increase doesn't help?What if quota increase doesn't help?

	 Start swapping

15-410, S’04- 46 -

Program optimizations

Locality depends on data structuresLocality depends on data structures

	 Arrays encourage sequential accesss

	 Random pointer data structures scatter references

Compiler & linker can helpCompiler & linker can help

	 Don't split a routine across two pages

	 Place helper functions on same page as main routine

Effects can be Effects can be dramaticdramatic

15-410, S’04- 47 -

Summary

Process address spaceProcess address space

	 Logical: list of regions

	 Hardware: list of pages

Fault handler is Fault handler is complicatedcomplicated

	 Page-in, copy-on-write, zero-fill, ...

Understand definition & use ofUnderstand definition & use of

	 Dirty bit

	 Reference bit

