15-410

“...The only way to win is not to play...”

Virtual Memory
Mar. 1, 2004

Dave Eckhardt
Bruce Maggs

L19_VM2

2

15-410, S’04




Synchronization

Checkpoint 1
= Wednesday 23:59

Final Exam list posted
= You must notify us of conflicts in a timely fashion

15-410, S’04



Last Time

Mapping problem: logical vs. physical addresses
Contiguous memory mapping (base, limit)
Swapping - taking turns in memory

Paging

= Array mapping page numbers to frame numbers
= Observation: typical table is sparsely occupied
= Response: some sparse data structure (e.g., 2-level array)

TLB - cache of virtual = physical mappings
Software-loaded TLB

_3. 15-410, S'04



Swapping

Multiple user processes
= Sum of memory demands > system memory
= Goal: Allow each process 100% of system memory

Take turns
= Temporarily evict process(es) to disk
= “Swap daemon” shuffles process in & out
= Can take seconds per process
= Creates external fragmentation problem

_4 - 15-410, S'04



External Fragmentation (“Holes”™)

15-410, S’04



Benefits of Paging

Process growth problem
= Any process can use any free frame for any purpose

Fragmentation compaction problem
= Process doesn't need to be contiguous

Long delay to swap a whole process
= Swap part of the process instead!

_6- 15-410, S'04



Partial Residence

-7 - 15-410, S’04



Page Table Entry (PTE) flags

Protection bits - set by OS
= Read/write/execute

Valid/Present bit — set by OS

= Frame pointer is valid, no need to fault
Dirty bit
= Hardware sets 0—1 when data stored into page
= OS sets 1=0 when page has been written to disk

Reference bit
= Hardware sets 0—=1 on any data access to page

= OS uses for page eviction (below)

15-410, S’04



Outline

Partial memory residence (demand paging) in action
The task of the page fault handler

Big speed hacks

Sharing memory regions & files

Page replacement policies

15-410, S’04



Partial Memory Residence

Error-handling code not used by every run
= No need for it to occupy memory for entire duration...

Tables may be allocated larger than used
player players |[MAX_PLAYERS];

Can run very large programs
= Much larger than physical memory
= As long as “active” footprint fits in RAM
= Swapping can't do this

Programs can launch faster
= Needn't load whole program before running
- 10 - 15-410, S’04



Demand Paging

Use RAM frames as a cache for the set of all pages

Page tables indicate which pages are resident
= Non-resident pages have “present=0" in page table entry

= Memory access referring to page generates page fault
= Hardware invokes page fault exception handler

- 11 - 15-410, S’04



Page fault - Why?

Address is invalid/illegal — deliver software exception
= Unix — SIGSEGV
= Mach - deliver message to thread's exception port
= 15-410 - Kill thread

Process is growing stack — give it a new frame

“Cache misses” - fetch from disk
= Where?

-12 - 15-410, S’04



Satisfying Page Faults

stack
III Free-frame pool

data

-—E-

-13 - 15-410, S’04

code



Page fault story - 1

Process issues memory reference
= TLB: miss (right?)
= PT: “not present”

Trap to OS kernel!
= Dump trap frame
= Transfer via “page fault” interrupt descriptor
= Run trap handler

_14 -

15-410, S'04



Page fault story — 2

Classify fault address: legal/illegal

Code/rodata region of executable?
= Determine which sector of executable file
= Launch read() into a blank frame

Previously resident, paged out
= “somewhere on the paging partition”
= Queue disk read into a blank frame

First use of bss/stack page
= Allocate a zero frame, insert into PT

_15-

15-410, S'04



Page fault story — 3

Put process to sleep (for most cases)
= Switch to running another

Handle I/O-complete interrupt
= Fill in PTE (present = 1)
= Mark process runnable

Restore registers, switch page table
= Faulting instruction re-started transparently
= Single instruction may fault more than once!

_ 16 -

15-410, S'04



Memory Regions vs. Page Tables

What's a poor page fault handler to do?
= Kill process?
= Copy page, mark read-write?
= Fetch page from file? Which? Where?

Page Table not a good data structure
= Format defined by hardware
= Per-page nature is repetitive

= Not enough bits to encode OS metadata
= Disk sector address can be > 32 bits

-17 - 15-410, S'04



Dual-view Memory Model

Logical
= Process memotry is a list of regions
= “Holes” between regions are illegal addresses

= Per-region methods
= fault(), evict(), unmap()

Physical
= Process memotry is a list of pages
= Faults delegated to per-region methods

= Many “invalid” pages can be made valid
= But sometimes a region fault handler returns “error”
» Handle as with “hole” case above

- 18 - 15-410, S'04



Page-fault story (for real)

Examine fault address
Look up: address = region

region—->fault (addr, access_mode)

= Quickly fix up problem
= Or put process to sleep, run scheduler

- 19 - 15-410, S'04



Demand Paging Performance

Effective access time of memory word

- (1 _pmiss) Tmemory"‘ pmiss Taisk

Textbook example
o Tmemory 100 ns

n TdiSk 25 mS
= p_. =1/1,000 slows down by factor of 250
= slowdown of 10% needs P < 1/2,500,000

-20 - 15-410, S'04



Copy-on-Write

fork() produces two very-similar processes
= Same code, data, stack

Expensive to copy pages

= Many will never be modified by new process
= Especially in fork(), exec() case

Share physical frames instead of copying?
= Easy: code pages — read-only
= Dangerous: stack pages!

-21 -

15-410, S’04



Copy-on-Write

Simulated copy
= Copy page table entries to new process
= Mark PTEs read-only in old & new
= Done! (saving factor: 1024)

Making it real
= Process writes to page (oops))

= Page fault handler responsible
= Copy page into empty frame
= Mark read-write in both PTEs

-2 -

15-410, S’04



Example Page Table

Page table

_23 .

15-410, S’04



Copy-on-Write of Address Space

_24 - 15-410, S'04



Memory Write = Permission Fault

W

o— Na

- 25 - 15-410, S’04




Copy Into Blank Frame

W

o— Na

_ 96 -

15-410, S’04



Adjust PTE frame pointer, access

- 27 - 15-410, S’04




Zero pages

Very special case of copy-on-write

Many process pages are “blank”
= All of bss
= New heap pages
= New stack pages

Have one system-wide all-zero page
= Everybody points to it
= Logically read-write, physically read-only
= Reads are free
= Writes cause page faults & cloning

_08 -

15-410, S’04



Memory-Mapped Files

Alternative interface to read(),write()
= mmap(addr, len, prot, flags, fd, offset)
= hew memory region presents file contents
= write-back policy typically unspecified

Benefits
= Avoid serializing pointer-based data structures

= Reads and writes may be much cheaper
= Look, Ma, no syscalls!

_29 .

15-410, S'04



Memory-Mapped Files

Implementation
= Memory region remembers mmap() parameters
= Page faults trigger read() calls
= Pages stored back via write() to file

Shared memory
= Two processes mmap() “the same way”
= Point to same memory region

-30 -

15-410, S’04



Page Replacement/Page Eviction

Process always want more memory frames
= Explicit deallocation is rare
= Page faults are implicit allocations

System inevitably runs out of frames

Solution
= Pick a frame, store contents to disk

= Transfer ownership to hew process
= Service fault using this frame

-31 - 15-410, S'04



Pick a Frame

Two-level approach
= Determine # frames each process “deserves”
= “Process” chooses which frame is least-valuable

System-wide approach
= Determine globally-least-useful frame

_32_

15-410, S’04



Store Contents to Disk

Where does it belong?

= Allocate backing store for each page
= What if we run out?

Must we really store it?

= Read-only code/data: no!

= Can re-fetch from executable

= Saves paging space & disk-write delay

= File system read() may be slower than paging-disk read
= Not modified since last page-in: no!

= Hardware typically provides “page-dirty” bit in PTE

-33 - 15-410, S’04



Page Eviction Policies

Don't try these at home
= FIFO
= Optimal
= LRU

Practical
= LRU approximation

_34 -

15-410, S’04



FIFO Page Replacement

Concept
= Page queue
= Page added to queue when first allocated
= Always evict oldest page (head of queue)

Evaluation
= Cheap
= Stupid
= May evict old unused startup-code page
= But guaranteed to evict process's favorite page too!

_35- 15-410, S'04



Optimal Page Replacement

Concept

= Evict whichever page will be referenced /atest
= Buy the most time until next page fault

Evaluation
= Requires perfect prediction of program execution
= Impossible to implement

So?
= Used as upper bound in simulation studies

- 36 - 15-410, S’04



LRU Page Replacement

Concept
= Evict least-recently-used page
= “Past performance may not predict future results”

Evaluation
= Would work well
= LRU is computable without fortune teller

= Bookkeeping very expensive
= Hardware must sequence-number every page reference!

237 - 15-410, S'04



Approximating LRU

Hybrid hardware/software approach
= 1 reference bit per page table entry
= OS sets reference = 0 for all pages
= Hardware sets reference=1 when PTE is used

= OS periodically scans
= reference == 1 = “recently used”

“Second-chance” (aka “clock”) algorithm
= Use stupid FIFO to choose victim pages
= Skip victims with reference == 1 (somewhat-recently used)

- 38 - 15-410, S’04



Clock Algorithm

static int nextpage = 0;
boolean reference[NPAGES];

int choose_victim() {
while (reference[nextpage])

reference [nextpage] = false;

o

nextpage = (nextpage+l) % NPAGES;

return (nextpage) ;

-39

15-410, S'04



Page Buffering

Problem
= Don't want to evict pages only when there is a fault
= Must wait for disk write before launching disk read

“Assume a blank page...”
= Page fault handler can be fast

“page-out daemon”

= Scan system for dirty pages
= Write to disk
= Clear dirty bit
= Page can be instantly declared blank later

_ 40 -

15-410, S’04



Frame Allocation

How many frames should a process have?

Minimum
= Examine worst-case instruction
= Can multi-byte instruction cross page boundary?
= Can memory parameter cross page boundary?
= How many memory parameters?
= Indirect pointers?

_41] -

15-410, S’04



Frame Allocation

Equal

= Every process gets same # frames
= “Fair”
= Probably wasteful

Proportional

= Larger processes get more frames
= Probably the right approach
= Encourages greediness

_4D -

15-410, S’04



Thrashing

Problem
= Process needs N pages
= OS provides N-1, N/2, etc.

Result
= Every page OS evicts generates “immediate” fault
= More time spent paging than executing

= Paging disk constantly busy
= Denial of “paging service” to other processes

_43 -

15-410, S’04



Working-Set Model

Approach
= Determine necessary # pages
= If unavailable, start swapping

How to measure?
= Periodically scan process reference bits
= Combine multiple scans (see text)

Evaluation
= EXxpensive

_44 -

15-410, S’04



Page-Fault Frequency

Approach
= Thrashing == “excessive” paging
= Adjust per-process frame quotas to balance fault rates

= Fault rate “too low”: reduce frame quota
= Fault rate “too high”: increase frame quota

What if quota increase doesn't help?
= Start swapping

_45 - 15-410, S'04



Program optimizations

Locality depends on data structures
= Arrays encourage sequential accesss
= Random pointer data structures scatter references

Compiler & linker can help
= Don't split a routine across two pages
= Place helper functions on same page as main routine

Effects can be dramatic

- 46 - 15-410, S'04



Summary

Process address space
= Logical: list of regions
= Hardware: list of pages

Fault handler is complicated

= Page-in, copy-on-write, zero-fill, ...

Understand definition & use of
= Dirty bit
= Reference bit

_47 -

15-410, S’04



