
15-410, S’04- 1 -

Virtual Memory #1
Feb. 23, 2004

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L17_VM1

15-410
“...The only way to win is not to play...”

15-410, S’04- 2 -

Synchronization

Mid-termMid-term
� Wednesday, 19:00, 7500 Wean
� Does not cover today's lecture

Final Exam list postedFinal Exam list posted
� You must notify us of conflicts in a timely fashion

Summer internship with SCS Facilities?Summer internship with SCS Facilities?

15-410, S’04- 3 -

Outline

The Problem: logical vs. physicalThe Problem: logical vs. physical

Contiguous memory mappingContiguous memory mapping

FragmentationFragmentation

PagingPaging
� Type theory
� Several mapping functions

TLBTLB

15-410, S’04- 4 -

Logical vs. Physical
It's all about address spacesIt's all about address spaces

� Generally a complex issue
� IPv4 ⇒ IPv6 is mainly about address space exhaustion

ReviewReview
� Combining .o's changes addresses

But what about But what about twotwo programs? programs?

15-410, S’04- 5 -

Every .o uses same address
space

code

data

bss

code

data

bss

15-410, S’04- 6 -

Combining .o's Changes
Addresses

code

data

bss

code

data

bss

15-410, S’04- 7 -

What about two programs?

code

data

bss

00010000

00010200

00010300

stack FFFFF000

code

data

bss

00010000

00010100

00010300

stack FFFFE000

15-410, S’04- 8 -

Logical vs. Physical Addresses

Logical addressLogical address
� Each program has its own address space

� fetch: address ⇒ data
� store: address, data ⇒ .

� As envisioned by programmer, compiler, linker

Physical addressPhysical address
� Where your program ends up in memory
� They can't all be loaded at 0x10000!

15-410, S’04- 9 -

Reconciling Logical, Physical

Ok, load programs at Ok, load programs at differentdifferent addresses addresses
� Requires using linker to “relocate one last time”
� Done by some old mainframe OSs
� Slow, complex, or both

Programs can Programs can take turnstake turns in memory in memory
� Requires swapping programs out to disk
� Very slow

We are computer scientists!We are computer scientists!
� Insert a level of indirection
� Well, get the ECE folks to do it for us

15-410, S’04- 10 -

Type Theory
Physical memory behaviorPhysical memory behavior

� fetch: address ⇒ data
� store: address, data ⇒ .

Process thinks of memory as...Process thinks of memory as...
� fetch: address ⇒ data
� store: address, data ⇒ .

Goal: each process has “its own memory”Goal: each process has “its own memory”
� fetch: process-id ⇒ (address ⇒ data)
� store: process-id ⇒ (address, data ⇒ .)

What What reallyreally happens happens
� process-id ⇒ (virtual-address ⇒ physical-address)

15-410, S’04- 11 -

Simple Mapping Functions
P1P1

If V > 8191 ERROR
Else P = 1000 + V

P2P2
If V > 16383 ERROR
Else P = 9292 + V

Address space ===Address space ===
� Base address
� Limit

Process 3

Process 2

Process 1

OS Kernel

0

16383

9292

25675

0
8191

1000
9291

15-410, S’04- 12 -

Contiguous Memory Mapping
Processor contains two Processor contains two control registerscontrol registers

� Memory base
� Memory limit

Each memory access checksEach memory access checks
If V < limit
 P = base + V;
Else

 ERROR /* what do we call this error? */

Context switchContext switch
� Save/load registers
� Load process's base, limit registers

15-410, S’04- 13 -

Problems with Contiguous Allocation
How do we How do we growgrow a process? a process?

� Must increase “limit” value
� Cannot expand into another process's memory!
� Must move entire address spaces around

� Very expensive

FragmentationFragmentation
� New processes may not fit into unused memory “holes”

Partial memory residencePartial memory residence
� Must entire program be in memory at same time?

15-410, S’04- 14 -

Can We Run Process 4?

Process exit creates Process exit creates
“holes”“holes”

New processes may be New processes may be
too largetoo large

May require moving entire May require moving entire
address spacesaddress spaces

Process 3

Process 4

OS Kernel

Process 1

15-410, S’04- 15 -

External Fragmentation

Free memory in small Free memory in small
chunkschunks

Doesn't fit large objectsDoesn't fit large objects

Can disable lots of Can disable lots of
memorymemory

Can fixCan fix
� Costly “compaction”

Process 4

Process 1

OS Kernel

Process 2

15-410, S’04- 16 -

Internal Fragmentation

Allocators often round upAllocators often round up
� 8K boundary (some

power of 2!)

Some memory is wasted Some memory is wasted
insideinside each segment each segment

Can't fix via compactionCan't fix via compaction

Effects often non-fatalEffects often non-fatal

Process 3

Process 4

Process 1

OS Kernel

0

8192

1100

9292

15-410, S’04- 17 -

Swapping

Multiple user processesMultiple user processes
� Sum of memory demands > system memory
� Goal: Allow each process 100% of system memory

Take turnsTake turns
� Temporarily evict process(es) to disk

� Not runnable
� Blocked on implicit I/O request (e.g., “swapread”)

� “Swap daemon” shuffles process in & out
� Can take seconds per process

� Modern analogue: laptop suspend-to-disk

15-410, S’04- 18 -

Contiguous Allocation ⇒ Paging

Solve multiple problemsSolve multiple problems
� Process growth problem
� Fragmentation compaction problem
� Long delay to swap a whole process

Divide memory more finelyDivide memory more finely
� Page = small region of virtual memory (4K)
� Frame = small region of physical memory
� [I will get this wrong, feel free to correct me]

Key idea!!!Key idea!!!
� Any page can map to (occupy) any frame

15-410, S’04- 19 -

Per-process Page Mapping

P0 code 0

OS Kernel

P1 code 0
P0 data 0
P1 data 0
P1 stack 0
P0 stack 0
P1 data 1
P0 code 1

P0 code 0
P0 code 1
P0 data 0
P0 stack 0

P1 code 0
P1 data 0
P1 data 1
P1 stack 0

15-410, S’04- 20 -

Benefits of Paging

Process growth problemProcess growth problem
� Any process can use any free frame for any purpose

Fragmentation compaction problemFragmentation compaction problem
� Process doesn't need to be contiguous

Long delay to swap a whole processLong delay to swap a whole process
� Swap part of the process instead!

15-410, S’04- 21 -

Partial Residence

P0 code 0

OS Kernel

[free]
P0 data 0
P1 data 0
P1 stack 0
P0 stack 0
P1 data 1

[free]

P0 code 0
P0 code 1
P0 data 0
P0 stack 0

P1 code 0
P1 data 0
P1 data 1
P1 stack 0

15-410, S’04- 22 -

New Data Structure
Contiguous allocationContiguous allocation

� Each process described by (base,limit)

PagingPaging
� Each page described by (base,limit)?

� Pages typically one size for whole system
� Each page described by base address
� Arbitrary page ⇒ frame mapping requires some work

� Abstract data structure: “map”
� Implemented as...

» Linked list?
» Array?
» Hash table?
» Splay tree?????

15-410, S’04- 23 -

Page Table Options
Linked listLinked list

� V⇒P time gets longer for large addresses!

ArrayArray
� Constant time access
� Requires contiguous memory for table

Hash tableHash table
� Vaguely-constant-time access
� Not really bounded though

Splay treeSplay tree
� Excellent amortized expected time
� Lots of memory reads & writes possible for one mapping
� Probably impractical

15-410, S’04- 24 -

Page Table Array

Page

....
f29
f34
....

Frame

Page table array

Page 3
Page 2
Page 1
Page 0

15-410, S’04- 25 -

Paging – Address Mapping

Logical Address

Page Offset

 4K page size ⇒ 12 bits

15-410, S’04- 26 -

Paging – Address Mapping

Logical Address

Page Offset

....
f29
f34
....

Frame

Page table

15-410, S’04- 27 -

Paging – Address Mapping

Logical Address

Page Offset

....
f29
f34
....

Frame Offset

Copy

Page table

15-410, S’04- 28 -

Paging – Address Mapping

Logical Address

Page Offset

....
f29
f34
....

Frame Offset

Page table
Physical Address

15-410, S’04- 29 -

Paging – Address Mapping

User viewUser view
� Memory is a linear array

OS viewOS view
� Each process requires N frames

Fragmentation?Fragmentation?
� Zero external fragmentation
� Internal fragmentation: maybe average ½ page

15-410, S’04- 30 -

Bookkeeping

One page table for each processOne page table for each process

One frame tableOne frame table
� Manages free frames
� Remembers who owns a frame

Context switchContext switch
� Must “activate” process's page table

15-410, S’04- 31 -

Hardware Techniques

Small number of pages?Small number of pages?
� “Page table” can be a few registers

Typical caseTypical case
� Large page tables, live in memory

� Where? Processor has “Page Table Base Register”

15-410, S’04- 32 -

Double trouble?

Program requests memory accessProgram requests memory access

Processor makes Processor makes twotwo memory accesses! memory accesses!
� Split address into page number, intra-page offset
� Add to page table base register
� Fetch page table entry (PTE) from memory
� Add frame address, intra-page offset
� Fetch data from memory

15-410, S’04- 33 -

Translation Lookaside Buffer
(TLB)
ProblemProblem

� Cannot afford double memory latency

Observation - “locality of reference”Observation - “locality of reference”
� Program accesses “nearby” memory

SolutionSolution
� Cache virtual-to-physical mappings

� Small, fast on-chip memory
� Don't forget context switch!

15-410, S’04- 34 -

Page Table Entry (PTE)
mechanics
PTE flagsPTE flags

� Protection
� Read/Write/Execute bits

� Valid bit
� Dirty bit

Page Table Length Register (PTLR)Page Table Length Register (PTLR)
� Programs don't use entire virtual space
� On-chip register detects out-of-bounds reference

� Allows small PTs for small processes

15-410, S’04- 35 -

Page Table Structure

ProblemProblem
� Assume 4 KByte pages, 4 Byte PTEs
� Ratio: 1024:1

� 4 GByte virtual address (32 bits) ⇒ 4 MByte page table
� For each process!

Key observationKey observation
� Each process page table is a sparse mapping
� Many pages are not backed by frames

� Address space is sparsely used
» Enormous “hole” between bottom of stack, top of heap
» Often occupies 99% of address space!

� Some pages are on disk instead of in memory

15-410, S’04- 36 -

Page Table Structure

Key observationKey observation
� Each process page table is a sparse mapping
� Page tables are not randomly sparse

� Occupied by sequential memory regions
� Text, rodata, data+bss, stack

We are computer scientists!We are computer scientists!
� Insert a level of indirection
� Well, get the ECE folks to do it for us

Multi-level page tableMulti-level page table
� Page directory maps large chunks of address space to...
� ...Page tables, which map to frames

15-410, S’04- 37 -

Multi-level page table

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08
 f07
....

Page
Directory

15-410, S’04- 38 -

Multi-level page table

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08
 f07
....

Page
Directory

15-410, S’04- 39 -

Multi-level page table

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

⇒f07⇒
....

Page
Directory

15-410, S’04- 40 -

Multi-level page table

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

⇒f07⇒
....

Page
Directory

15-410, S’04- 41 -

Multi-level page table

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2

15-410, S’04- 42 -

Multi-level page table

P1 Offset

....
f29
f34
f25

f34

Page
Tables

....
f99
f87
....

P2

15-410, S’04- 43 -

Multi-level page table

P1 Offset

....
f29
f34
f25

f34 Offset

Page
Tables

....
f99
f87
....

P2

15-410, S’04- 44 -

Sparse Mapping?
Assume 4 KByte pages, 4-byte PTEsAssume 4 KByte pages, 4-byte PTEs

� Ratio: 1024:1
� 4 GByte virtual address (32 bits) ⇒ 4 MByte page table

Now assume page directory with 4-byte PDEsNow assume page directory with 4-byte PDEs
� 4-megabyte page table becomes 1024 4K page tables
� Single 1024-entry (4Kbyte) page directory can cover them

Sparse address space...Sparse address space...
� ...means most page tables contribute nothing to mapping...
� ...all of them are full of “empty” entries

15-410, S’04- 45 -

Sparse Mapping?
Page directory can be sparsePage directory can be sparse

� Contains pointers only to non-empty page tables

Common caseCommon case
� Need 2 or 3 page tables

� One or two map code, data
� One maps stack

� Page directory has 1024 slots
� Three are filled in with valid pointers
� Remainder are “not present”

ResultResult
� 3 page tables
� 1 page directory
� Map address space with 16Kbyte, not 4Mbyte

15-410, S’04- 46 -

Segmentation

Physical memory is (mostly) linearPhysical memory is (mostly) linear

Is virtual memory linear?Is virtual memory linear?
� Typically a set of regions

� “Module” = code region + data region
� Region per stack
� Heap region

Why do regions matter?Why do regions matter?
� Natural protection boundary
� Natural sharing boundary

15-410, S’04- 47 -

Segmentation: Mapping

Seg # Offset

<=

Physical Address
Limit Base

+

15-410, S’04- 48 -

Segmentation + Paging

80386 (does it 80386 (does it allall !)!)
� Processor address directed to one of six segments

� CS: Code Segment, DS: Data Segment
� CS register holds 16-bit selector

� 32-bit offset within a segment -- CS:EIP
� Descriptor table maps selector to segment descriptor
� Offset fed to segment descriptor, generates linear address
� If linear address not in TLB...
� Linear address fed through page directory, page table

15-410, S’04- 49 -

x86 Type Theory

Instruction Instruction ⇒⇒ segment selector segment selector
� [PUSHL specifies selector in %SS]

Process Process ⇒⇒ (selector (selector ⇒⇒ (base,limit)) (base,limit))
� [Global,Local Descriptor Tables]

Segment, address Segment, address ⇒⇒ linear address linear address

TLB: linear address TLB: linear address ⇒⇒ physical address or... physical address or...

Process Process ⇒⇒ (linear address high (linear address high ⇒⇒ page table) page table)
� [Page Directory Base Register, page directory indexing]

Page Table: linear address middle Page Table: linear address middle ⇒⇒ frame address frame address

Memory: frame address, offset Memory: frame address, offset ⇒⇒

15-410, S’04- 50 -

Is there another way?

That seems That seems really complicatedreally complicated
� Is that hardware monster really optimal for every OS and

program mix?
� “The only way to win is not to play?”

Could we have Could we have nono page tables? page tables?

How would hardware map virtual to physical???How would hardware map virtual to physical???

15-410, S’04- 51 -

Software-loaded TLBs

ReasoningReasoning
� We need a TLB for performance reasons
� OS defines each process's memory structure

� Which memory ranges, permissions
� Why impose a semantic middle-man?

ApproachApproach
� TLB contains small number of mappings
� OS knows the rest
� TLB miss generates special trap
� OS quickly fills in correct v ⇒p mapping

15-410, S’04- 52 -

Software TLB features

Mapping entries can be computed many waysMapping entries can be computed many ways
� Imagine a system with one process memory size

� TLB miss becomes a matter of arithmetic

Mapping entries can be locked in TLBMapping entries can be locked in TLB
� Great for real-time systems

Further readingFurther reading
� http://yarchive.net/comp/software_tlb.html

15-410, S’04- 53 -

Summary

Processes emit virtual addressesProcesses emit virtual addresses
� segment-based or linear

A magic process maps virtual to physicalA magic process maps virtual to physical

No, it's No, it's notnot magic magic
� Address validity verified
� Permissions checked
� Mapping may fail temporarily (trap handler)
� Mapping results cached in TLB

Data structures determined by access patternsData structures determined by access patterns
� Most address spaces are sparsely allocated

