15-410

“...The only way to win Is not to play...”

Virtual Memory #1
Feb. 23, 2004

Dave Eckhardt
Bruce Maggs

L17 VM1

15-410, S'04

Synchronization

Mid-term
= Wednesday, 19:00, 7500 Wean
= Does not cover today's lecture

Final Exam list posted
= You must notify us of conflicts in a timely fashion

Summer internship with SCS Facilities?

15-410, S'04

Outline

The Problem: logical vs. physical
Contiguous memory mapping
Fragmentation

Paging
= Type theory
= Several mapping functions

TLB

15-410, S'04

Logical vs. Physical

It's all about address spaces

= Generally a complex issue
= |Pv4 [0 IPv6 is mainly about address space exhaustion

Review
= Combining .0's changes addresses

But what about iwo programs?

-4 - 15-410, S'04

Every .0 uses same address
space

bss

data

code

15-410, S'04

Combining .0's Changes
Addresses

bss

bss

data
data

code

code
15-410, S'04

What about fwo programs?

stack -FFFFOOO stack -FFFEOOO

bss -00010300 bss 00010300
data [00010200

data -00010100

code 00010000 code -OOOlOOOO

-7 - 15-410, S'04

Logical vs. Physical Addresses

Logical address

= Each program has its own address space
= fetch: address [1 data
= store: address, data [.

= As envisioned by programmer, compiler, linker

Physical address
= Where your program ends up in memory
= They can't all be loaded at 0x10000!

15-410, S'04

Reconciling Logical, Physical

Ok, load programs at different addresses
= Requires using linker to “relocate one last time”
= Done by some old mainframe OSs
= Slow, complex, or both

Programs can take turns in memory
= Requires swapping programs out to disk
= Very slow

We are computer scientists!
= |nsert a level of indirection
= Well, get the ECE folks to do it for us

15-410, S'04

Type Theory

Physical memory behavior
= fetch: address [1 data
= store: address, data [

Process thinks of memory as...
= fetch: address [data

= store: address, data [

Goal: each process has “its own memory”
= fetch: process-id [(address [data)
= store: process-id [(address, data [.)

What really happens

= process-id [(virtual-address [1 physical-address)

- 10 - 15-410, S'04

Simple Mapping Functions

Pl
If V> 8191 ERROR
Else P = 1000 + V

P2
16383 25675 If V > 16383 ERROR
. 9292 Else P = 9292 + V
8191 0291 Address space ===

1000

= Base address
= Limit

-11 - 15-410, S'04

Contiguous Memory Mapping

Processor contains two control registers
= Memory base
= Memory limit

Each memory access checks

If V < limit
P = base + V;
Else

ERROR* what do we call this error? */

Context switch
= Save/load registers
= Load process's base, limit registers

-12 - 15-410, S'04

Problems with Contiguous Allocation

How do we grow a process?
= Must increase “limit” value
= Cannot expand into another process's memory!

= Must move entire address spaces around
= Very expensive

Fragmentation
= New processes may not fit into unused memory “holes”

Partial memory residence
= Must entire program be in memory at same time?

-13 - 15-410, S'04

Can We Run Process 47

Process exit creates
“holes”

New processes may be
too large

May require moving entire
address spaces

- 14 -

15-410, S'04

External Fragmentation

Free memory in small
chunks

Doesn't fit large objects

Can disable lots of
memory

Can fix
= Costly “compaction”

OS Kernel

- 15 -

15-410, S'04

Internal Fragmentation

Allocators often round up

= 8K boundary (some
power of 2!)

Some memory is wasted
inside each segment

L : 8192
Can't fix via compaction

Effects often non-fatal

- 16 -

OS Kernel

9292
1100

15-410, S'04

Swapping

Multiple user processes
= Sum of memory demands > system memory
= Goal: Allow each process 100% of system memory

Take turns

= Temporarily evict process(es) to disk
= Not runnable
= Blocked on implicit 1/0 request (e.g., “swapread”)

= “Swap daemon” shuffles process in & out

= Cantake seconds per process
= Modern analogue: laptop suspend-to-disk

- 17 -

15-410, S'04

Contiguous Allocation

Solve multiple problems
= Process growth problem
= Fragmentation compaction problem
= Long delay to swap a whole process

Divide memory more finely
= Page = small region of virtual memory (4K)
= Frame = small region of physical memory
= [l will get this wrong, feel free to correct me]

Key idea!!!
= Any page can map to (occupy) any frame

- 18 -

Paging

15-410, S'04

Per-process Page Mapping

o

-19 - 15-410, S'04

Benefits of Paging

Process growth problem
= Any process can use any free frame for any purpose

Fragmentation compaction problem
= Process doesn't need to be contiguous

Long delay to swap a whole process
= Swap part of the process instead!

=20 -

15-410, S'04

Partial Residence

-21 - 15-410, S'04

New Data Structure

Contiguous allocation
= Each process described by (base,limit)

Paging
= Each page described by (base,limit)?
= Pages typically one size for whole system
= Each page described by base address

= Arbitrary page [frame mapping requires some work

= Abstract data structure: “map”
= Implemented as...

» Linked list?

» Array?

» Hash table?

-22 -

15-410, S'04

Page Table Options

Linked list

= VO P time gets longer for large addresses!

Array
= Constant time access
= Requires contiguous memory for table

Hash table

= Vaguely-constant-time access
= Not really bounded though

Splay tree
= Excellent amortized expected time
= [ots of memory reads & writes possible for one mapping

= Probably impractical
- 23 - 15-410, S'04

Page Table Array

Page 3
Page 2
Page 1
Page O

Page table array

_24 -

15-410, S'04

Paging — Address Mapping

\ 4K page size O 12 bits

- 25 -

15-410, S'04

Paging — Address Mapping

Page table

- 26 -

15-410, S'04

Paging — Address Mapping

Page table

_27 -

15-410, S'04

Paging — Address Mapping

Page table

- 28 -

15-410, S'04

Paging — Address Mapping

User view
= Memory is a linear array

OS view
= Each process requires N frames

Fragmentation?
= Zero external fragmentation
= |nternal fragmentation: maybe average % page

- 29 -

15-410, S'04

Bookkeeping

One page table for each process

One frame table
= Manages free frames
= Remembers who owns a frame

Context switch
= Must “activate” process's page table

- 30 -

15-410, S'04

Hardware Techniques

Small number of pages?
= “Page table” can be a few registers

Typical case

= Large page tables, live in memory
= Where? Processor has “Page Table Base Register”

- 31 -

15-410, S'04

Double trouble?

Program requests memory access

Processor makes iwo memory accesses!
= Split address into page number, intra-page offset
Add to page table base register
Fetch page table entry (PTE) from memory
Add frame address, intra-page offset
Fetch data from memory

- 32 -

15-410, S'04

Translation Lookaside Buffer
(TLB)

Problem
= Cannot afford double memory latency

Observation - “locality of reference”
= Program accesses “nearby” memory

Solution
= Cache virtual-to-physical mappings
= Small, fast on-chip memory
= Don't forget context switch!

- 33 -

15-410, S'04

Page Table Entry (PTE)
mechanics

PTE flags

= Protection
= Read/Write/Execute bits

= Valid bit
= Dirty bit

Page Table Length Register (PTLR)
= Programs don't use entire virtual space

= On-chip register detects out-of-bounds reference
= Allows small PTs for small processes

- 34 -

15-410, S'04

Page Table Structure

Problem
= Assume 4 KByte pages, 4 Byte PTEs
= Ratio: 1024:1

= 4 GByte virtual address (32 bits) [0 4 MByte page table
= For each process!

Key observation
= Each process page tableisa sparse mapping

= Many pages are not backed by frames
= Address space is sparsely used
» Enormous “hole” between bottom of stack, top of heap
» Often occupies 99% of address space!
= Some pages are on disk instead of in memory
- 35 - 15-410, S'04

Page Table Structure

Key observation
= Each process page tableisa sparse mapping

= Page tables are not randomly sparse
= Occupied by sequential memory regions
= Text, rodata, data+bss, stack

We are computer scientists!
= |nsert a level of indirection

= Well, get the ECE folks to do it for us

Multi-level page table
= Page directory maps large chunks of address space to...

= ...Page tables, which map to frames
- 36 - 15-410, S'04

Multi-level page table

Page
Directory
Page
Tables

- 37 -

15-410, S'04

Multi-level page table

Page
Directory

g

Page
Tables

- 38 -

15-410, S'04

Multi-level page table

Page
Directory

Page
Tables

-39 -

15-410, S'04

Multi-level page table

Page
Directory

Page
Tables

- 40 -

15-410, S'04

Multi-level page table

Page
Tables

_41] -

15-410, S'04

Multi-level page table

Page
Tables

_42 -

15-410, S'04

Multi-level page table

Page
Tables

_ 43 -

15-410, S'04

Sparse Mapping?

Assume 4 KByte pages, 4-byte PTEs
= Ratio: 1024:1
= 4 GByte virtual address (32 bits) [4 MByte page table

Now assume page directory with 4-byte PDEs
= 4-megabyte page table becomes 1024 4K page tables
= Single 1024-entry (4Kbyte) page directory can cover them

Sparse address space...

= ...means most page tables contribute nothing to mapping...
= _..all of them are full of “empty” entries

-44 - 15-410, S'04

Sparse Mapping?

Page directory can be sparse
= Contains pointers only to non-empty page tables

Common case

= Need 2 or 3 page tables
= One or two map code, data
= One maps stack

= Page directory has 1024 slots
= Three are filled in with valid pointers
= Remainder are “not present”

Result

= 3 page tables

= 1 page directory

= Map address space with 16Kbyte, not 4Mbyte
- 45 -

15-410, S'04

Segmentation

Physical memory is (mostly) linear

Is virtual memory linear?

= Typically a set of regions
= “Module” = code region + data region
= Region per stack
= Heap region

Why do regions matter?
= Natural protection boundary
= Natural sharing boundary

_ 46 -

15-410, S'04

Segmentation: Mapping

Limit

Base

_47 -

15-410, S'04

Segmentation + Paging

80386 (does it all!)

= Processor address directed to one of six segments
= CS: Code Segment, DS: Data Segment
— CS register holds 16-bit selector
= 32-bit offset within a segment -- CS:EIP

Descriptor table maps selector to segment descriptor

Offset fed to segment descriptor, generates linear address
If linear address not in TLB...

Linear address fed through page directory, page table

- 48 - 15-410, S'04

Xx86 Type Theory

Instruction segment selector
= [PUSHL specifies selector in %SS]

Process [(selector O (base,limit))
= [Global,Local Descriptor Tables]

Segment, address linear address
TLB: linear address physical address or...

Process [(linear address high page table)
= [Page Directory Base Register, page directory indexing]

Page Table: linear address middle frame address

Memory: frame address, offset 0O ...

- 49 - 15-410, S'04

Is there another way?

That seems really complicated

= |s that hardware monster really optimal for every OS and
program mix?

= “The only way to win is not to play?”
Could we have no page tables?
How would hardware map virtual to physical???

- 50 - 15-410, S'04

Software-loaded TLBs

Reasoning
= We need a TLB for performance reasons

= OS defines each process's memory structure
= Which memory ranges, permissions

= Why impose a semantic middle-man?

Approach
= TLB contains small number of mappings
= OS knows the rest
= TLB miss generates special trap
= OS quickly fillsin correctv [p mapping

- 51 -

15-410, S'04

Software TLB features

Mapping entries can be computed many ways

= |magine a system with one process memory size
= TLB miss becomes a matter of arithmetic

Mapping entries can be locked in TLB
= Great for real-time systems

Further reading
= http://yarchive.net/comp/software_tlb.html

_52 -

15-410, S'04

Summary

Processes emit virtual addresses
= segment-based or linear

A magic process maps virtual to physical

No, it's not magic
= Address validity verified
= Permissions checked
= Mapping may fail temporarily (trap handler)
= Mapping results cached in TLB

Data structures determined by access patterns
= Most address spaces are sparsely allocated

- 53 -

15-410, S'04

