15-410

“Nobody else reads these quotes anyway...”
Linking
February 13, 2004

Dave Eckhardt
Bruce Maggs

Some slides taken from 15-213 S’03 (Goldstein, Maggs).
Original slides authored by Randy Bryant and Dave O’Hallaron.

15-410, S’04

Synchronization

Upcoming events

2/18 (tonight) — Project 2 due

2/20 (Friday) — Project 3 out

2/25 (Wednesday) — Homework 1 due

2/25 (Wednesday) — Midterm exam (evening)
March 3 — Project 3 checkpoint 1

March 5 — Mid-semester/spring break

Spring break

= We do noft plan for you to work on Project 3

= It can be an excellent time for some “light reading”

15-410, S’04

Pop Quiz

Q1. What does this program do?
[bmm@bmm bmm]$ cat pf.c
#include <stdio.h>

int main ()

{
printf ("%d\n",printf) ;

}

Q2. What does the Unix “ld” program do?

3 15-410, S'04

Pop Quiz

Q1. What does this program do?
[bmm@bmm bmm]$ cat pf.c

#include <stdio.h>
int main ()
{
printf ("$d\n", printf);
}

[bmm@bmm bmm]$ gcc pf.c —-o pf
[bmm@bmm bmm]$ pf
134513416

4 15-410, S'04

Outline

What is printf()?
Where addresses come from

Executable files vs. Memory Images
= Conversion by “program loader”
= You will write one for exec() in Project 3

Object file linking (answer to Q2)
= Loader bugs make programs execute half-right

= You will need to characterize what's broken
1. (Not: “every time | call printf() | get a triple fault”)

= You will need to how the parts should fit together

15-410, S’04

Where do addresses come from?

Program linking, program loading
= ... means getting bits in memory at the right addresses

Who uses those addresses?
= (Where did that “wild access” come from?)

Code addresses: program counter (%cs:%eip)
= Straight-line code
= Loops, conditionals
= Procedure calls

Stack area: stack pointer (%ss:%esp, %Sss:%ebp)
Data regions (data/bss/heap)

= Most pointers in general purpose registers (%ds:%ebx)

6 15-410, S04

How are they initialized?

Program counter
= Set to “entry point” by OS program loader

Stack pointer
= Set to “top of stack” by OS program loader

Registers
= How does my code know the address of thread_table[]?

= Some pointers are stored in the instruction stream
for (tp = thread_table,
tp < &thread table[n_threads], ++tp)

= Some pointers are stored in the data segment
struct thread *thr base = &thread table[0];

= How do these all point to the right places?

7 15-410, S’'04

Where does an int live?

int k = 3;
int foo(void) {
return (k);

} bss 8192
int a = 0;
int b = 12; data 4096

int bar (void) {
return (a + b);

code

8 15-410, S’04

Loader: Image File = Memory Image

data

code

bss

4090
data

code

Image file has header (tells loader what to do)
Memory image has bss segment!

15-410, S’04

Programs are Multi-part

Modularity

= Program can be written as a collection of smaller source files,
rather than one monolithic mass.

= Can build libraries of common functions (more on this later)
= e.g., Math library, standard C library

Efficiency (time)
= Change one source file, compile, and then relink.
= No need to recompile other source files.

“Link editor” combines objects into one image file
= Unix “link editor” called “Id”

10 15-410, S'04

Combining Objects: Link Editor

11

m.cC

!

a.c

!

Translators

Translators

v
m.o

!

Separately compiled

\ 4
2 l relocatable object files

Linker (Id)

P

i Executable object file (contains code

and data for all functions defined inm. c

and a.c)

15-410, S’04

Linker Todo List

Merge object files

= Merges multiple relocatable (.0) object files into a single executable
object file that can loaded and executed by the loader.

Resolve external references

= As part of the merging process, resolves external references.
= External reference: reference to a symbol defined in another object file.

Relocate symbols

= Relocates symbols from their relative locations in the .o files to
new absolute positions in the executable.

= Updates all references to these symbols to reflect their new
positions.

= What does this mean??

12 15-410, S’04

Every .0 uses same address space

bss

data
data

code - code _

13 15-410, S’04

Combining .0's Changes Addresses

bss

bss

data
data

code

code

14 15-410, S'04

Linker uses relocation information

Field

= address, bit field size

Field type

= relative, absolute

Field reference
= symbol nhame

Example
= “Bytes 1024..1027 of foo.0 refer to absolute address of main”

15 15-410, S'04

Example C Program

16

15-410, S’04

17

Merging Relocatable Object Files
into an Executable Object File

Relocatable Object Files

.0

system code

system data

main ()

7

int e

a()

int *ep = &e

int x = 15

int vy

.text
.data

.text

.data

.text

.data

.bss

N/

Executable Object File

0

headers

system code

main ()

a()

more system code

system data

int e = 7

int *ep = &e

int x = 15

uninitialized data

.symtab
.debug

N

> .text

]\

- .data

.bss

15-410, S’04

Relocating Symbols and Resolving
External References

= Symbols are lexical entities that name functions and variables.
= Each symbol has a value (typically a memory address).

= Code consists of symbol definitions and references.

= References can be either /ocal or external.

m.cC a.c

int e=7; extern int e;
Def of Iocal//' _
symbol e int main() { int *ep=&e;

int r = a(); int #=15; \ Ref to
exit (0); inf y; — external
int a(

} symbol e
Def of) {
/ local return *ep+x+y> Defs of

~
Ref to external symbol |} Ioca:O |
symbol exit Ref to external €P | T zyar?\do S
(defined in symbol a Def of Refs of local Y
libc. so) local

symbols ep, %,y
18 symbol a 15-410, S'04

m.o Relocation Info

m.cC

int e=7;

int main() {
int r = a();
exit (0);

}

source: objdump
19

Disassembly of section .text:

00000000 <main>:
0: 55
1: 89 e5

3: e8 fc ff ff £ff call

8: 6a 00

a: e8 fc ff ff £ff call

f: 90

00000000 <main>:
pushl %ebp
movl sesp, sebp
4 <main+0x4>

4: R 386_PC32 a

pushl $0x0
b <main+0xb>

b: R 386 PC32 exit

nop

Disassembly of section .data:

00000000 <e>:

0: 07 00 00 00

15-410, S’04

a .o Relocation Info (.text)

a.c

extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
return *ep+t+x+ty;

}

20

Disassembly of section

00000000 <a>:

.text:

0: 55 pushl $%ebp
1: 8b 15 00 00 00 movl 0x0, $edx
6: 00
3: R 386 _32 ep
7: al 00 00 00 00 _ movl 0x0, $eax
8: R 386_32 x
c: 89 e5 movl %esp, sebp
e: 03 02 addl %$edx) , seax
10: 89 ec movl %ebp, %sesp
12: 03 05 00 00 00 addl 0x0, $eax
17: 00
| 14: R 386 32 y |
18: 5d popl %ebp
19: c3 ret
15-410, S’04

a .o Relocation Info (.data)

a.

21

Cc

Disassembly of section .data:

00000000 <ep>:
0: 00 00 00 00

0: R _386_32 e

00000004 <x>:
4: 0f 00 00 00

15-410, S’04

Executable After Relocation and
External Reference Resolution (.text)

22

08048530

8048530:
8048531:
8048533:
8048538:
804853a:
804853f:

08048540

8048540:
8048541:
8048546:
8048547 :
804854c:
804854e:
8048550:
8048552:
8048557:
8048558:
8048559:

<main>:

<a>:

55
8b
08
al
89
03
89
03
08
5d
c3

eb
08
00
35

15

20

02

ec
05

00

ff

1c

a0

do

00

ff

a0

04

a3

00

ff

04

08

04

pushl
movl
call
pushl
call
nop

pushl
movl

movl
movl
addl
movl
addl

popl
ret

sebp

sesp, sebp

8048540 <a>

$0x0

8048474 <_init+0x94>

sebp
0x804a0lc, $edx

0x804a020, Seax
sesp, sebp
$edx) , $eax
%ebp, Sesp
0x804a3d0, Seax

%ebp

Executable After Relocation and
External Reference Resolution(.data)

m.cC

int e=7;
’ Disassembly of section .data:

int main() {
int r = a(); 0804a018 <e>:

exit (0) ; 804a018: 07 00 00 00
}

a.c 0804a0lc <ep>:
804a0lc: 18 a0 04 08

extern int e;

int *ep=&e;

int x=15;
i ’ 0804a020 <x>:

’ 804a020: 0f 00 00 00
int a() {

return *ep+x+ty;

}

23 15-410, S'04

Executable File / Image File

Linked program consists of multiple “sections”
= Section properties
= Type
= Memory address
Common Executable File Formats
= a.out - “assembler output” (primeval Unix format: 70's, 80's)
= Mach-O — Mach Object (used by MacOS X)

= ELF — Executable and Linking Format
= (includes “DWARF” - Debugging With Attribute Record Format)

24 15-410, S’04

Executable and Linkable Format
(ELF)

Standard binary format for object files

Derives from AT&T System V Unix
= Later adopted by BSD Unix variants and Linux

One unified format for
= Relocatable object files (. o)
= Executable object files
= Shared object files (.so)

Generic name: ELF binaries
Better support for shared libraries than old a. out formats.

25 15-410, S'04

ELF Object File Format

Elf header
= Magic number, type (.0, exec, .s0),
machine, byte ordering, etc.
Program header table

= Page size, virtual addresses memory
segments (sections), segment sizes.

.text section
= Code

.data section
= |nitialized (static) data

.bss section
= Uninitialized (static) data
= “Block Started by Symbol”
= “Better Save Space”

= Has section header but occupies no space
26

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.txt

.rel.data

.debug

Section header table
(required for relocatables)

15-410, S'04

ELF Object File Format (cont)

.symtab section

Symbol table
Procedure and static variable names
Section names and locations

.text section

Relocation info for . text section

Addresses of instructions that will need to
be modified in the executable

Instructions for modifying.

.data section

Relocation info for .data section

Addresses of pointer data that will need to
be modified in the merged executable

.debug section

27

Info for symbolic debugging (gcc -g)

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

15-410, S'04

“Not needed on voyage’

Some sections not needed for execution
= Symbol table
= Relocation information
= Symbolic debugging information

These sections not loaded into memory

May be removed with “strip” command
= Or retained for future debugging

28

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

15-410, S’04

Loading ELF Binaries

29

Executable object file for
example program p

ELF header

Program header table
(required for executables)

Process image

.text section

init and shared lib
segments

.data section

.bss section

.symtab

.text segment
(r/0)

.rel.text

.rel.data

.debug

.data segment
(initialized r/w)

Section header table
(required for relocatables)

.bss segment
(uninitialized r/w)

Virtual addr

0x080483e0

0x08048494

0x0804a010

0x0804a3b0

15-410, S’04

Packaging Commonly Used Functions

How to package functions commonly used by programmers?
= Math, /0, memory management, string manipulation, etc.

Awkward, given the linker framework so far:

= Option 1: Put all functions in a single source file
= Programmers link big object file into their programs
= Space and time inefficient

= Option 2: Put each function in a separate source file
= Programmers explicitly link appropriate binaries into their programs
= More efficient, but burdensome on the programmer

Solution: static libraries (.a archive files)

= Concatenate related relocatable object files into a single file with an
index (called an archive).

= Enhance linker so that it tries to resolve unresolved external
references by looking for the symbols in one or more archives.

= |f an archive member file resolves reference, link into executable.
30 15-410, S'04

Static Libraries (archives)

pl.c p2.c
Translator Translator
i i static library (archive) of
pl.o libc.a relocatable object files

p2.0
\ l / concatenated into one file.

Linker (Id)

i executable object file (only contains code
P and data for 1ibc functions that are called
frompl.candp2.c)

Further improves modularity and efficiency by packaging
commonly used functions [e.g., C standard library (1ibc),
math library (1ibm)]

Linker includes only those . o files in the archive that are
31 actually needed by the program. 15-410, S°04

Creating Static Libraries

32

atoi.c printf.c

Translator Translator
v v

atoi.o printf.o

\ |

random.c

|

Translator

!

random. o

/

Archiver (ar)

ar rs libec.a \

libc.a

C standard library

Archiver allows incremental updates:
- Recompile function that changes and replace .o file in
archive.

atoi.o printf.o ..

random.o

15-410, S’04

Commonly Used Libraries

libc. a (the C standard library)

= 8 MB archive of 900 object files.

= /0, memory allocation, signal handling, string handling, data and
time, random numbers, integer math

libm. a (the C math library)

= 1 MB archive of 226 object files.

= floating point math (sin, cos, tan, log, exp, sqgrt, ...)

% ar -t /usr/lib/libc.a | sort
fork.o

fprintf.o

fpu_control.o

fputc.o

freopen.o

fscanf.o

fseek.o
fstab.o

% ar -t /usr/lib/libm.a | sort

e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o

e _asinf.o
e _asinl.o

Using Static Libraries

Linker’s algorithm for resolving external references:
= Scan .o files and .a files in the command line order.

= During the scan, keep a list of the current unresolved
references.

= As each new .0 or .a file obj is encountered, try to resolve
each unresolved reference in the list against the symbols in
obj.
= If any entries in the unresolved list at end of scan, then error.
Problem:

= Command line order matters!
= Moral: put libraries at the end of the command line.

bass> gcc -L. libtest.o —-lmine
bass> gcc -L. -1lmine libtest.o
libtest.o: In function "main':
libtest.o(.text+0x4) : undefined reference to "libfun'

34 15-410, S'04

Dynamic Linking

Goal
= Build program
= Don't commit to particular version of library now
= Don't bloat program with 1024'th copy of printf() on disk

Defer “final link” as much as possible
= The instant before execution

Program startup invokes “shared object loader”
= Locates library files
= Adds files into address space
= Links files to program, often incrementally
= Self-modifying “stub” routines
= First call looks up routine address in symbol table

= Later calls go directly to start of routine
35 15-410, S’04

“Shared libraries”

Extension/optimization of dynamic linking

Basic idea
= Why have N copies of printf() in memory?

= Allow processes to share memory pages
= “Intelligent” mmap()
= Must avoid address-map conflicts
= Can issue each library on a system an address range, or
= Can build libraries from position-independent code
» (out of scope for this class)

36

15-410, S’04

Dynamically Linked Shared Libraries
0 s

Translators Translators
(cc1, as) (cc1,as)
m;o a;o

Linker (Id)

libc.so Shared library of dynamically

Partially linked executablep P relocatable object files
(on disk) i /
Loade(:‘g?x:z;ms(;;' i< libc. so functions called by m. c
i and a. c are loaded, linked, and
l (potentially) shared among
Fully linked executable processes.
P 14

37 P’ (in memory) 15-410, S'04

The Complete Picture

38

m.cC a.c

v v
Translator Translator

' v

m.o

~

libwhatever.a

i o

Static Linker (Id)

libc.so 1libm.so

i//

Loader/Dynamic Linker
(Id-linux.so0)

!

pl

15-410, S’04

Summary

Where do addresses come from?
Where does an int live?
Image file vs. Memory image

Linker
= What, why
= Relocation

ELF structure
Static libraries
Dynamic / Shared libraries

39 15-410, S04

Back to the mystery of pf.c

[bmm@bmm bmm]$ cc -S pf.c -o pf.S
[bmm@bmm bmm]$ as -c pf.S -o pf.o
[bmm@bmm bmm]$ gcc pf.o —-o pf

40 15-410, S’04

Back to the mystery of pf.c

[bmm@bmm bmm]$ cc -S pf.c -o pf.S

[bmm@bmm bmm]$ as -c pf.S -o pf.o
[bmm@bmm bmm]$ 1d -static pf.o /usr/lib/crtl.o /usr/lib/crti.o \

/usr/local/libexec/gcc-2.95.3/1ib/gcc-1ib/i686—-pc—-linux-gnu/2.95.3/crtbegin.o \
/usr/local/libexec/gcc-2.95.3/1ib/gcc-1ib/i686—-pc—-linux—-gnu/2.95.3/crtend.o \

/usr/lib/crtn.o -1lc -o pf

41 15-410, S’04

[bmm@bmm bmm]$ cc -S pf.c -o pf.S
[bmm@bmm bmm]$ cat pf.S

.section .rodata
.LCO:
.string "%d4"
.text
.align 4
.globl main
.type main, @function
main:
pushl %ebp
movl %esp, $Sebp
pushl $printf
pushl $.LCO
call printf
addl $8, $esp
.L1:
leave
ret

42 15-410, S’04

[bmm@bmm bmm]$ as pf.S -o pf.o
[bmm@bmm bmm]$ objdump -D —--disassemble-zeroes pf.o

pf.o: file format el1£32-i386
Disassembly of section .text:

00000000 <main>:

0: 55 push %ebp

1: 89 e5 mov %esp, $ebp

3 83 ec 08 sub $0x8, $esp

6: 83 c4 f£8 add SOxXfffffff8, Sesp
9: 68 00 00 00 OO push $0x0

e 68 00 00 00 OO push $0x0
13 e8 fc ff ff ff call 14 <main+0x14>
18 83 c4 10 add $0x10, $esp
1b: 89 ec mov %ebp, $Sesp
1d: 5d pop %ebp
le: c3 ret

Disassembly of section .data:
Disassembly of section .rodata:

00000000 <.rodata>:

0: 25
1: 64
2: 00

15-410, S’04

44

[bmm@bmm bmm]$ gcc pf.o —-o pf
[bmm@bmm bmm]$ objdump -D —--disassemble-zeroes pf

pf:

Disassembly of section

080483e4

80483e4:
80483e5:
80483e7:
80483ea:
80483ed:
80483f2:
80483f7:
80483fc:
80483ff:
8048401:
8048402:

Disassembly of section

file format elf32-i386

<main>:
55
89
83
83
68
68
e8
83
89
5d
c3

eb5
ec
c4
08
68
Oc
c4
ec

.text:

08
f8
83 04 08
84 04 08
ff £f ff
10

.rodata:

08048464 < IO stdin_used>:

8048464:
8048466:
8048468:
8048469:
804846a:

01
02
25
64
00

00
00

push
mov
sub
add
push
push
call
add
mov
pop
ret

sebp

sesp, $ebp

$0x8, $esp
SOxXfffffff8, Sesp
$0x8048308
$0x8048468

8048308 < _init+0x70>
$0x10, $esp

%ebp, $esp

sebp

15-410, S’04

Linker Puzzles

45

15-410, S’04

Strong and Weak Symbols

Program symbols are either strong or weak
= strong: procedures and initialized globals
= weak: uninitialized globals

pl.c p2.c
strong —lint foo=5; int foo;¢ weak
strong —»1;1 0O 1 1;'2 Od_ strong

46 15-410, S'04

Linker’'s Symbol Rules

Rule 1. A strong symbol can only appear once.

Rule 2. A weak symbol can be overridden by a strong
symbol of the same name.
= references to the weak symbol resolve to the strong symbol.

Rule 3. If there are multiple weak symbols, the linker
can pick an arbitrary one.

47 15-410, S’'04

Linker Puzzles

int x;

pl1() {} pl1() {}

Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

int x; int x;

pl1() {} p2() {}

?nt = double x; Writes to x in p2 might overwrite y!

int y; p2() {} Evil!

pl() {}]

int x=7; double x; Writes to x in p2 will overwrite y!

int y=5; p2() {1} Nasty!

pl() {}

int x=7; int x; References to x will refer to the same initialized
pl() {1} p2() {} variable.

Nightmare scenario: two identical weak structs, compiled by different compilers

with different alignment rules.
48 15-410, S'04

