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Synchronization

� P2 – You should really have

� Made each syscall once

� Except maybe minclone()

� A detailed design for {thr,mutex,cond}_*()

� Readings (posted on course web)

� Deadlock: 7.4.3, 7.5.3, Chapter 8

� Scheduling: Chapter 6

� Memory: Chapter 9, Chapter 10
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Outline

� Process resource graph

� What is deadlock?

� Deadlock prevention

� Next time

� Deadlock avoidance

� Deadlock recovery
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Process/Resource graph
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Process/Resource graph
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Waiting
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Release
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Reallocation
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Multi-instance Resources
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Definition of Deadlock

� Deadlock

� Set of N processes

� Each waiting for an event

� ...which can be caused only by another waiting process

� Every process will wait forever
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Deadlock Examples

� Simplest form

� Process 1 owns printer, wants tape drive

� Process 2 owns tape drive, wants printer

� Less-obvious

� Three tape drives

� Three processes

� Each has one tape drive

� Each wants “just” one more

� Can't blame anybody, but problem is still there
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Deadlock Requirements

� Mutual Exclusion

� Hold & Wait

� No Preemption

� Circular Wait
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Mutual Exclusion

� Resources aren't “thread-safe”  (“reentrant”)

� Must be allocated to one process/thread at a time

� Can't be shared

� Programmable Interrupt Timer

� Can't have a different reload value for each process
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Hold & Wait

� Process holds resources while waiting for more
mutex_lock(&m1);
mutex_lock(&m2);
mutex_lock(&m3);

� Typical locking behavior
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No Preemption

� Can't force a process to give up a resource

� Interrupting a CD-R write creates a “ coaster”

� Obvious solution

� CD-R device driver forbids second open()



16

Circular Wait

� Process 0 needs something process 4 has

� Process 4 needs something process N has

� Process N needs something process M has

� Process M needs something process 0 has
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Cycle in Resource Graph
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Deadlock Requirements

� Mutual Exclusion

� Hold & Wait

� No Preemption

� Circular Wait

� Each deadlock requires all four
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Multi-Instance Cycle
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Multi-Instance Cycle (With Rescuer!)
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Cycle Broken
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Dining Philosophers

� The scene

� 410 staff at a Chinese restaurant

� A little short on utensils
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Dining Philosophers
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Dining Philosophers

� Processes

� 5, one per person

� Resources

� 5 bowls (dedicated to a diner: ignore)

� 5 chopsticks

� 1 between every adjacent pair of diners

� Contrived example?

� Illustrates contention, starvation, deadlock



25

Dining Philosophers Deadlock

� Everybody reaches clockwise...

� ...at the same time?
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Reaching Right
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Process graph
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Deadlock!
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Dining Philosophers – State

int stick[5] = { -1 }; /* owner */
condition avail[5]; /* now avail. */
mutex table = { available };

/* Right-handed convention */
right = diner;
left = (diner + 4) % 5;



30

start_eating(int diner)

mutex_lock(table);
while (stick[right] != -1)
  condition_wait(avail[right], table);

stick[right] = diner;
while (stick[left] != -1)
  condition_wait(avail[left], table);
stick[left] = diner;

mutex_unlock(table);
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done_eating(int diner)

mutex_lock(table);
stick[left] = stick[right] = -1;
condition_signal(avail[right]);
condition_signal(avail[left]);

mutex_unlock(table);
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Analyze using pthread semantics

pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
unlock mutex;
wait for condition;
contend for mutex;

pthread_cond_signal(pthread_cond_t *cond)
wake up some thread waiting for condition;
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First diner gets both chopsticks
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Next gets right, waits on left
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Next two get right, wait on left
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Last waits on right
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First diner gives up chopsticks
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Last diner gets right, waits on left
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First diner gets right, waits on left
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Monitor semantics

� Only one thread active within “ monitor”  at a time.

� Textbook, Section 7.7.

� Signaling thread gives control to waiting thread 
(“ possibility 1” ) or signaling thread continues 
(“ possibility 2” ).

� Differs from pthread condition semantics!
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Deadlock - What to do?

� Prevention

� Avoidance

� Detection/Recovery

� Just reboot when it gets “ too quiet”
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Prevention

� Restrict behavior or resources

	 Find a way to violate one of the 4 conditions


 To wit...?

� What we will talk about today

	 4 conditions, 4 possible ways
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Avoidance

� Processes pre-declare usage patterns

� Dynamically examine requests

	 Imagine what other processes could ask for

	 Keep system in “ safe state”
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Detection/Recovery

� Maybe deadlock won't happen today...

� ...Hmm, it seems quiet...

� ...Oops, here is a cycle...

� Abort some process

	 Ouch!
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Reboot When It Gets “ Too Quiet”

� Which systems would be so simplistic?
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Four Ways to Forgiveness

� Each deadlock requires all four

	 Mutual Exclusion

	 Hold & Wait

	 No Preemption

	 Circular Wait

� Prevention

	 Pass a law against one (pick one)

	 Deadlock only if somebody transgresses!
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Outlaw Mutual Exclusion

� Don't have single-user resources

	 Require all resources to “ work in shared mode”

� Problem

	 Chopsticks???

	 Many resources don't work that way
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Outlaw Hold&Wait

� Acquire resources all-or-none
start_eating(int diner)

mutex_lock(table);
while (1)

  if (stick[lt] == stick[rt] == -1)
    stick[lt] = stick[rt] = diner
    mutex_unlock(table)
    return;

  condition_wait(released, table);
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Problem – Starvation

� Larger resource set makes grabbing harder

	 No guarantee a diner eats in bounded time

� Low utilization

	 Must allocate 2 chopsticks and waiter

	 Nobody else can use waiter while you eat
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Outlaw Non-preemption

� Steal resources from sleeping processes!
start_eating(int diner)
right = diner;   rright = (diner+1)%5;
mutex_lock(table);
while (1)

  if (stick[right] == -1)
    stick[right] = diner
  else if (stick[rright] != rright)

    /* right can't be eating: take! */
    stick[right] = diner;
...same for left...
mutex_unlock(table);
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Problem

� Some resources cannot be cleanly preempted

� CD burner
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Outlaw Circular Wait

� Impose total order on all resources

� Require acquisition in strictly increasing order

� Static: allocate memory, then files

� Dynamic: ooops, need resource 0; drop all, start over
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Assigning a Total Order

� Lock order: 4, 3, 2, 1, 0: right, then left

� Issue: (diner == 0) ⇒ (left == 4)

� would lock(0), lock(4): left, then right!
if diner == 0
  right = (diner + 4) % 5;

  left = diner;
else
  right = diner;

  left = (diner + 4) % 5;
...
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Problem

� May not be possible to force allocation order

� Some trains go east, some go west
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Deadlock Prevention problems

� Typical resources require mutual exclusion

� Allocation restrictions can be painful

� All-at-once


 Hurts efficiency


 May starve

� Resource needs may be unpredictable

� Preemption may be impossible

� Or may lead to starvation

� Ordering restrictions may not be feasible
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Deadlock Prevention

� Pass a law against one of the four ingredients

� Great if you can find a tolerable approach

� Very tempting to just let processes try their luck
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Next Time

� Deadlock Avoidance

� Deadlock Recovery


