
1

Deadlock (1)

Dave Eckhardt
Bruce Maggs

2

Synchronization

� P2 – You should really have

� Made each syscall once

� Except maybe minclone()

� A detailed design for {thr,mutex,cond}_*()

� Readings (posted on course web)

� Deadlock: 7.4.3, 7.5.3, Chapter 8

� Scheduling: Chapter 6

� Memory: Chapter 9, Chapter 10

3

Outline

� Process resource graph

� What is deadlock?

� Deadlock prevention

� Next time

� Deadlock avoidance

� Deadlock recovery

4

Process/Resource graph

Tape 1

P1

Tape 2

P2

Tape 3

P3

Request

5

Process/Resource graph

Tape 1

P1

Tape 2

P2

Tape 3

P3

Allocation

6

Waiting

Tape 1

P1

Tape 2

P2

Tape 3

P3

7

Release

Tape 1

P1

Tape 2

P2

Tape 3

P3

8

Reallocation

Tape 1

P1

Tape 2

P2

Tape 3

P3

9

Multi-instance Resources

P1 P2 P3

Tapes Disks

10

Definition of Deadlock

� Deadlock

� Set of N processes

� Each waiting for an event

� ...which can be caused only by another waiting process

� Every process will wait forever

11

Deadlock Examples

� Simplest form

� Process 1 owns printer, wants tape drive

� Process 2 owns tape drive, wants printer

� Less-obvious

� Three tape drives

� Three processes

� Each has one tape drive

� Each wants “just” one more

� Can't blame anybody, but problem is still there

12

Deadlock Requirements

� Mutual Exclusion

� Hold & Wait

� No Preemption

� Circular Wait

13

Mutual Exclusion

� Resources aren't “thread-safe” (“reentrant”)

� Must be allocated to one process/thread at a time

� Can't be shared

� Programmable Interrupt Timer

� Can't have a different reload value for each process

14

Hold & Wait

� Process holds resources while waiting for more
mutex_lock(&m1);
mutex_lock(&m2);
mutex_lock(&m3);

� Typical locking behavior

15

No Preemption

� Can't force a process to give up a resource

� Interrupting a CD-R write creates a “ coaster”

� Obvious solution

� CD-R device driver forbids second open()

16

Circular Wait

� Process 0 needs something process 4 has

� Process 4 needs something process N has

� Process N needs something process M has

� Process M needs something process 0 has

17

Cycle in Resource Graph

Tape 2

P1

Tape 1

P2

Tape 3

P3

18

Deadlock Requirements

� Mutual Exclusion

� Hold & Wait

� No Preemption

� Circular Wait

� Each deadlock requires all four

19

Multi-Instance Cycle

P3P2P1

Tapes Disks

20

Multi-Instance Cycle (With Rescuer!)

P3P2P1

Tapes Disks

21

Cycle Broken

P3P2P1

Tapes Disks

22

Dining Philosophers

� The scene

� 410 staff at a Chinese restaurant

� A little short on utensils

23

Dining Philosophers

DETO

JE

JGBR

24

Dining Philosophers

� Processes

� 5, one per person

� Resources

� 5 bowls (dedicated to a diner: ignore)

� 5 chopsticks

� 1 between every adjacent pair of diners

� Contrived example?

� Illustrates contention, starvation, deadlock

25

Dining Philosophers Deadlock

� Everybody reaches clockwise...

� ...at the same time?

26

Reaching Right

DETO

JE

JGBR

27

Process graph

DETO

JE

JGBR

28

Deadlock!

DETO

JE

JGBR

29

Dining Philosophers – State

int stick[5] = { -1 }; /* owner */
condition avail[5]; /* now avail. */
mutex table = { available };

/* Right-handed convention */
right = diner;
left = (diner + 4) % 5;

30

start_eating(int diner)

mutex_lock(table);
while (stick[right] != -1)
 condition_wait(avail[right], table);

stick[right] = diner;
while (stick[left] != -1)
 condition_wait(avail[left], table);
stick[left] = diner;

mutex_unlock(table);

31

done_eating(int diner)

mutex_lock(table);
stick[left] = stick[right] = -1;
condition_signal(avail[right]);
condition_signal(avail[left]);

mutex_unlock(table);

32

Analyze using pthread semantics

pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
unlock mutex;
wait for condition;
contend for mutex;

pthread_cond_signal(pthread_cond_t *cond)
wake up some thread waiting for condition;

33

First diner gets both chopsticks

34

Next gets right, waits on left

35

Next two get right, wait on left

36

Last waits on right

37

First diner gives up chopsticks

38

Last diner gets right, waits on left

39

First diner gets right, waits on left

40

Monitor semantics

� Only one thread active within “ monitor” at a time.

� Textbook, Section 7.7.

� Signaling thread gives control to waiting thread
(“ possibility 1”) or signaling thread continues
(“ possibility 2”).

� Differs from pthread condition semantics!

41

Deadlock - What to do?

� Prevention

� Avoidance

� Detection/Recovery

� Just reboot when it gets “ too quiet”

42

Prevention

� Restrict behavior or resources

	 Find a way to violate one of the 4 conditions

 To wit...?

� What we will talk about today

	 4 conditions, 4 possible ways

43

Avoidance

� Processes pre-declare usage patterns

� Dynamically examine requests

	 Imagine what other processes could ask for

	 Keep system in “ safe state”

44

Detection/Recovery

� Maybe deadlock won't happen today...

� ...Hmm, it seems quiet...

� ...Oops, here is a cycle...

� Abort some process

	 Ouch!

45

Reboot When It Gets “ Too Quiet”

� Which systems would be so simplistic?

46

Four Ways to Forgiveness

� Each deadlock requires all four

	 Mutual Exclusion

	 Hold & Wait

	 No Preemption

	 Circular Wait

� Prevention

	 Pass a law against one (pick one)

	 Deadlock only if somebody transgresses!

47

Outlaw Mutual Exclusion

� Don't have single-user resources

	 Require all resources to “ work in shared mode”

� Problem

	 Chopsticks???

	 Many resources don't work that way

48

Outlaw Hold&Wait

� Acquire resources all-or-none
start_eating(int diner)

mutex_lock(table);
while (1)

 if (stick[lt] == stick[rt] == -1)
 stick[lt] = stick[rt] = diner
 mutex_unlock(table)
 return;

 condition_wait(released, table);

49

Problem – Starvation

� Larger resource set makes grabbing harder

	 No guarantee a diner eats in bounded time

� Low utilization

	 Must allocate 2 chopsticks and waiter

	 Nobody else can use waiter while you eat

50

Outlaw Non-preemption

� Steal resources from sleeping processes!
start_eating(int diner)
right = diner; rright = (diner+1)%5;
mutex_lock(table);
while (1)

 if (stick[right] == -1)
 stick[right] = diner
 else if (stick[rright] != rright)

 /* right can't be eating: take! */
 stick[right] = diner;
...same for left...
mutex_unlock(table);

51

Problem

� Some resources cannot be cleanly preempted

� CD burner

52

Outlaw Circular Wait

� Impose total order on all resources

� Require acquisition in strictly increasing order

� Static: allocate memory, then files

� Dynamic: ooops, need resource 0; drop all, start over

53

Assigning a Total Order

� Lock order: 4, 3, 2, 1, 0: right, then left

� Issue: (diner == 0) ⇒ (left == 4)

� would lock(0), lock(4): left, then right!
if diner == 0
 right = (diner + 4) % 5;

 left = diner;
else
 right = diner;

 left = (diner + 4) % 5;
...

54

Problem

� May not be possible to force allocation order

� Some trains go east, some go west

55

Deadlock Prevention problems

� Typical resources require mutual exclusion

� Allocation restrictions can be painful

� All-at-once

 Hurts efficiency

 May starve

� Resource needs may be unpredictable

� Preemption may be impossible

� Or may lead to starvation

� Ordering restrictions may not be feasible

56

Deadlock Prevention

� Pass a law against one of the four ingredients

� Great if you can find a tolerable approach

� Very tempting to just let processes try their luck

57

Next Time

� Deadlock Avoidance

� Deadlock Recovery

