
15-410, S’04- 1 -

#include
Feb. 6, 2004

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L12a_include

15-410
“...#ifndef DSFLK_FSFDDS_FSDFDS...”

15-410, S’04- 2 -

Synchronization

Register your partner todayRegister your partner today

Register your partner todayRegister your partner today

Register your partner todayRegister your partner today

How is P2 going?How is P2 going?

� Should have read both handout documents by now

� Should start thr_create() before Monday

15-410, S’04- 3 -

Outline

#ifndef DSFLK_FSFDDS_FSDFDS#ifndef DSFLK_FSFDDS_FSDFDS

What What shouldshould go here, anyway? go here, anyway?

15-410, S’04- 4 -

What's _STDIO_H_ anyway?

#ifndef _STDIO_H_

#define _STDIO_H_

typedef struct FILE {

 ...

} ...;

#endif /* _STDIO_H_ */

15-410, S’04- 5 -

Archaeology

C is oldC is old

C doesn't have modulesC doesn't have modules

C has C has filesfiles

� Compilers sort of know some file types: .c, .s

� Compilers don't really know about .h

� Auxiliary “pre-processor” brain hides them

People use People use conventionsconventions to get module-like C to get module-like C

� These conventions evolved slowly

15-410, S’04- 6 -

The “.h Responsibility” Dilemma

Assume: “stdio module”Assume: “stdio module”

Assume: “network stack module”Assume: “network stack module”

� (Trust us, it's modular!)

Both need to knowBoth need to know

� What's a size_t on this machine, anyway?

� #include <sys/types.h>

15-410, S’04- 7 -

Nested Responsibility

Program 1:Program 1:

� #include <stdio.h>

Program 2:Program 2:

� #include <netinet/tcp_var.h>

AssumeAssume

� Program 1, 2 don't need sys/types.h themselves

Solution 1Solution 1

� stdio.h and netinet/tcp_var.h each include sys/types.h

15-410, S’04- 8 -

Too Much

Program 3:Program 3:

� #include <stdio.h>

� #include <netinet/tcp_var.h>

ProblemProblem

� Now we get two copies sys/types.h

� Lots of whining about redefinitions

� Maybe compilation fails

15-410, S’04- 9 -

Passing the Buck

Blame the user!Blame the user!

Solution 2Solution 2

� Require main program to #include <sys/types.h>

ProblemProblem

� Annoying for user

� Modules' needs change over time

� Didn't you know? Since last night xxx needs yyy...

15-410, S’04- 10 -

Solution: Idempotent .h files

.h responsibility.h responsibility

� Activate only once

� No matter how many times included

� Choose string “unlikely to be used
elsewhere”

#ifndef _STDIO_H_

#define _STDIO_H_

...

#endif /* _STDIO_H_ */

15-410, S’04- 11 -

What Belongs In a .h?

Types (C: Types (C: declarationsdeclarations, not , not definitionsdefinitions))

Exported interface routines (“public methods”)Exported interface routines (“public methods”)

Constants (#define or enum)Constants (#define or enum)

Macros (when Macros (when appropriateappropriate))

Data items exported by moduleData items exported by module

� Try to avoid this

� Same reason as other languages: data != semantics

No code!No code!

15-410, S’04- 12 -

But What About...?

Real modules have multiple .c filesReal modules have multiple .c files

� Who declares internal data structures?

� (Internally, we agree on semantics)

� Who declares internal functions?

Not “ the” .h fileNot “ the” .h file

� We don't want to publish internal details

Maybe a “ .i” file?Maybe a “ .i” file?

� Help?

15-410, S’04- 13 -

Use the Other .h File!

stdio.hstdio.h

� Included by module clients

� Included by module parts

stdio_private.hstdio_private.h

� Included only by module parts

� Ideally, not available to user's prying eyes

*_private.h should be idempotent, too*_private.h should be idempotent, too

15-410, S’04- 14 -

Summary

#ifndef DSFLK_FSFDDS_FSDFDS#ifndef DSFLK_FSFDDS_FSDFDS

� Well, use a better string

� Used to make .h files idempotent

What What shouldshould go here, anyway? go here, anyway?

� There are two “ here”'s here

� foo.h: public interface, available to public

� foo_private.h: internal communication, maybe unpublished

