
15-410, S’04- 1 -

Synchronization #2
Jan. 30, 2004

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L09b_Synch

15-410
“Strangers in the night...”

15-410, S’04- 2 -

Synchronization

Project 0 feedback progressProject 0 feedback progress

� Red ink on paper: available yesterday afternoon

� Going over yours is important

� Code quality not part of the P0 grade

� Will be part of P1 grade

� “Don't make me stop the car...”

� Test results (score)

� Will appear in 410/usr/$USER/grades/p0

15-410, S’04- 3 -

Outline

Last timeLast time

� Two building blocks

� Three requirements for mutual exclusion

� Algorithms people don't use for mutual exclusion

TodayToday

� Ways to really do mutual exclusion

MondayMonday

� Inside voluntary descheduling

WednesdayWednesday

� Project 2 – thread library

15-410, S’04- 4 -

Mutual Exclusion: Reminder

Protects an atomic instruction sequenceProtects an atomic instruction sequence

� Do "something" to guard against

� CPU switching to another thread

� Thread running on another CPU

AssumptionsAssumptions

� Atomic instruction sequence will be “short”

� No other thread “likely” to compete

15-410, S’04- 5 -

Mutual Exclusion: Goals

Typical case (no competitor) should be fastTypical case (no competitor) should be fast

Atypical case can be slowAtypical case can be slow

� Should not be “ too wasteful”

15-410, S’04- 6 -

Interfering Code Sequences

Customer Delivery
cash = store->cash; cash = store->cash;
cash += 50; cash -= 2000;
wallet -= 50; wallet += 2000;
store->cash = cash; store->cash = cash;

Which sequences interfere?
“Easy”: Customer interferes with Customer
Also: Delivery interferes with Customer

15-410, S’04- 7 -

Mutex aka Lock aka Latch

Specify interfering code sequences via Specify interfering code sequences via objectobject

� Data item(s) “protected by the mutex”

Object methods encapsulate entry & exit protocolsObject methods encapsulate entry & exit protocols
 mutex_lock(&store->lock);

 cash = store->cash

 cash += 50;

 personal_cash -= 50;

 store->cash = cash;

 mutex_unlock(&store->lock);

What's inside?What's inside?

15-410, S’04- 8 -

Mutual Exclusion: Atomic
Exchange
Intel x86 XCHG instructionIntel x86 XCHG instruction

� intel-isr.pdf page 754

xchg (%esi), %edixchg (%esi), %edi
int32 xchg(int32 *lock, int32 val) {

 register int old;

 old = *lock; /* bus is locked */
 lock = val; / bus is locked */
 return (old);

}

15-410, S’04- 9 -

Inside a Mutex

InitializationInitialization
int lock_available = 1;

Try-lockTry-lock
i_won = xchg(&lock_available, 0);

Spin-waitSpin-wait
while (!xchg(&lock_available, 0)

 /* nothing */ ;

UnlockUnlock
xchg(&lock_available, 1); /*expect 0*/

15-410, S’04- 10 -

Strangers in the Night,
Exchanging 0's

1

Thread

0
?

Thread
?

0

15-410, S’04- 11 -

And the winner is...

0

Thread
0

Thread
1

15-410, S’04- 12 -

Does it work?

[What are the questions, again?][What are the questions, again?]

15-410, S’04- 13 -

Does it work?

Mutual ExclusionMutual Exclusion

ProgressProgress

Bounded WaitingBounded Waiting

15-410, S’04- 14 -

Does it work?

Mutual ExclusionMutual Exclusion

� Only one thread can see lock_available == 1

ProgressProgress

� Whenever lock_available == 1 a thread will get it

Bounded WaitingBounded Waiting

� No

� A thread can lose arbitrarily many times

15-410, S’04- 15 -

Attaining Bounded Waiting

LockLock

waiting[i] = true;

got_it = false;

while (waiting[i] && !got_it)

 got_it = xchg(&lock_available,

 false);

waiting[i] = false;

15-410, S’04- 16 -

Attaining Bounded Waiting

UnlockUnlock

j = (i + 1) % n;

while ((j != i) && !waiting[j])

 j = (j + 1) % n;

 if (j == i)

 xchg(&lock_available, true); /*W*/

 else

 waiting[j] = false;

15-410, S’04- 17 -

Attaining Bounded Waiting

Versus textbookVersus textbook

� Exchange vs. TestAndSet

� “Available” vs. “ locked”

� Atomic release vs. normal memory write

� Text does “blind write” at point “W”

 lock_available = true;

� This may be illegal on some machines

� Unlocker may be required to use special memory access

� Exchange, TestAndSet, etc.

15-410, S’04- 18 -

Evaluation

One awkward requirementOne awkward requirement

One unfortunate behaviorOne unfortunate behavior

15-410, S’04- 19 -

Evaluation

One awkward requirementOne awkward requirement

� Everybody knows size of thread population

� Always & instantly!

� Or uses an upper bound

One unfortunate behaviorOne unfortunate behavior

� Recall: expect zero competitors

� Algorithm: O(n) in maximum possible competitors

Is this criticism too harsh?Is this criticism too harsh?

� After all, Baker's Algorithm has these misfeatures...

15-410, S’04- 20 -

Looking Deeper

Look beyond abstract semanticsLook beyond abstract semantics

� Mutual exclusion, progress, bounded waiting

ConsiderConsider

� Typical access pattern

� Runtime environment

EnvironmentEnvironment

� Uniprocessor vs. Multiprocessor

� Who is doing what when we are trying to lock/unlock?

� Threads aren't mysteriously “ running” or “not running”

� Decision made by scheduling algorithm with properties

15-410, S’04- 21 -

Uniprocessor Environment

LockLock

� What if xchg() didn't work the first time?

� Some other process has the lock

� That process isn't running (because we are)

� xchg() loop is a waste of time

� We should let the lock-holder run instead of us

UnlockUnlock

� What about bounded waiting?

� When we mark mutex available, who wins next?

� Whoever runs next..only one at a time!

� How unfair are real OS kernel thread schedulers?

� How could we fix it if our schedule were unfair???

15-410, S’04- 22 -

Multiprocessor Environment

LockLock

� Spin-waiting probably justified

� (why?)

UnlockUnlock

� Next xchg() winner “chosen” by memory hardware

� How unfair are real memory controllers?

15-410, S’04- 23 -

Test&Set

boolean testandset(int32 *lock) {

register boolean old;

 old = *lock; /* bus is locked */

 lock = true; / bus is locked */

 return (old);

}

Conceptually simpler than XCHG?Conceptually simpler than XCHG?

� Or not

15-410, S’04- 24 -

Load-linked, Store-conditional

For multiprocessorsFor multiprocessors

� “Bus locking considered harmful”

Split XCHG into halvesSplit XCHG into halves

� Load-linked(addr) fetches old value from memory

� Store-conditional(addr,val) stores new value back

� If nobody else stored to that address in between

15-410, S’04- 25 -

Load-linked, Store-conditional

loop: LL $3, mutex_addr

 BEQ $3, $0, loop # not avail

 LI $3, 0 # prep. 0

 SC $3, mutex_addr # write 0?

 BEQ $3, $0, loop # aborted...

Your cache “snoops” the shared memory busYour cache “snoops” the shared memory bus

� Locking would shut down all memory traffic

� Snooping allows all traffic, watches for conflicting traffic

� Are aborts “ok”? When are they “ok” ?

15-410, S’04- 26 -

Intel i860 magic lock bit

Instruction sets processor in “ lock mode”Instruction sets processor in “ lock mode”

� Locks bus

� Disables interrupts

Isn't that dangerous?Isn't that dangerous?

� 32-cycle countdown timer triggers unlock

� Exception triggers unlock

� Memory write triggers unlock

15-410, S’04- 27 -

Mutual Exclusion: Software

Lamport's “Fast Mutual Exclusion” algorithmLamport's “Fast Mutual Exclusion” algorithm

� 5 writes, 2 reads (if no contention)

� Not bounded-waiting (in theory, i.e., if contention)

� http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-
RR-7.html

Why not use it?Why not use it?

� What kind of memory writes/reads?

� Remember, the computer is “modern” ...

15-410, S’04- 28 -

Passing the Buck?

Q: Why not ask the OS to provide mutex_lock()?Q: Why not ask the OS to provide mutex_lock()?

Easy on a uniprocessor...Easy on a uniprocessor...

� Kernel automatically excludes other threads

� Kernel can easily disable interrupts

Kernel has special power on a multiprocessorKernel has special power on a multiprocessor

� Can issue “ remote interrupt” to other CPUs

So why So why notnot rely on OS? rely on OS?

15-410, S’04- 29 -

Passing the Buck

A: Too expensiveA: Too expensive

� Because... (you know this song!)

15-410, S’04- 30 -

Mutual Exclusion: Tricky
Software
Fast Mutual Exclusion for UniprocessorsFast Mutual Exclusion for Uniprocessors

� Bershad, Redell, Ellis: ASPLOS V (1992)

Want uninterruptable instruction sequences?Want uninterruptable instruction sequences?

� Pretend!
 scash = store->cash;

 scash += 10;

 wallet -= 10;

 store->cash = scash;

� Uniprocessor: interleaving requires thread switch...

� Short sequence almost always won't be interrupted...

15-410, S’04- 31 -

How can that work?

Kernel Kernel detectsdetects “context switch in atomic sequence” “context switch in atomic sequence”

� Maybe a small set of instructions

� Maybe particular memory areas

� Maybe a flag
 no_interruption_please = 1;

Kernel Kernel handleshandles unusual case unusual case

� Hand out another time slice? (Is that ok?)

� Hand-simulate unfinished instructions (yuck?)

� “ Idempotent sequence” : slide PC back to start

15-410, S’04- 32 -

Summary

Atomic instruction sequenceAtomic instruction sequence

� Nobody else may interleave same/” related” sequence

Specify interfering sequences via Specify interfering sequences via mutex objectmutex object

Inside a mutexInside a mutex

� Last time: race-condition memory algorithms

� Atomic-exchange, Compare&Swap, Test&Set, ...

� Load-linked/Store-conditional

� Tricky software, weird software

Mutex strategyMutex strategy

� How should you behave given runtime environment?

