
15-410, S’04- 1 -

Synchronization #1
Jan. 28, 2004

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L08_Synch

15-410
“My computer is 'modern'!”

15-410, S’04- 2 -

Synchronization

Project 0 feedback progressProject 0 feedback progress

� Target: tomorrow

� Read .announce today and tomorrow

� Red ink on paper

� Test results

Project 1 alertProject 1 alert

� “make print” must work

15-410, S’04- 3 -

Project 0 Common Themes

Style/structureStyle/structure

� Constants instead of #defined tokens

� “2” is not better than “TYPE_DOUBLE”

� It is much much much worse

� Don't ever do that

� Bad variable/function names

� initialize() should not terminate

� “Code photocopier”

� Excessively long functions

� Harry Bovik did not help you write your P0

15-410, S’04- 4 -

Project 0 Common Themes

Style/structureStyle/structure

� Code is read by people

� Us

� Your partner

� Your manager

� ...

� Don't make it painful for us

� or else...

15-410, S’04- 5 -

Project 0 Common Themes
RobustnessRobustness

� Not checking syscall returns (e.g., tmpfile())

� Not finding last function / not handing unnamed function

� Memory leak (no need for malloc() at all!)

15-410, S’04- 6 -

Project 0 Common Themes
Not following specNot following spec

� Hand-verifying addresses (compare vs. 0x0804... 0xc000...)

� Approximating arg-offset info

� Instead of getting it from the table!!

� Give up via exit() -- caller never authorized that!

� Stopping trace at hard-coded function name

15-410, S’04- 7 -

Outline

Me vs. Chapter 7Me vs. Chapter 7

� Mind your P's and Q's

� Atomic sequences vs. voluntary de-scheduling

� “Sim City” example

� You will need to read the chapter

� Hopefully my preparation/review will clarify it

15-410, S’04- 8 -

Outline

An intrusion from the “ real world”An intrusion from the “ real world”

Two fundamental operationsTwo fundamental operations

Three necessary critical-section propertiesThree necessary critical-section properties

Two-process solutionTwo-process solution

N-process “Bakery Algorithm”N-process “Bakery Algorithm”

15-410, S’04- 9 -

Mind your P's and Q's

What you writeWhat you write
 choosing[i] = true;

 number[i] =

 max(number[0], number[1], ...) + 1;

 choosing[i] = false;

What happens...What happens...
 number[i] =

 max(number[0], number[1], ...) + 1;

 choosing[i] = false;

15-410, S’04- 10 -

Mind your P's and Q's

What you writeWhat you write
 choosing[i] = true;

 number[i] =

 max(number[0], number[1], ...) + 1;

 choosing[i] = false;

Or maybe...Or maybe...
 choosing[i] = false;

 number[i] =

 max(number[0], number[1], ...) + 1;

“Computer Architecture for $200, Dave” ...“Computer Architecture for $200, Dave” ...

15-410, S’04- 11 -

My computer is broken?!

No, your computer is No, your computer is
"modern""modern"

� Processor "write pipe"
queues memory stores

� ...and coalesces
"redundant" writes!

Crazy?Crazy?

� Not if you're pounding
out pixels!

CPU

Memory

choosing[i] false

number[i] 45

choosing[i] true

15-410, S’04- 12 -

My computer is broken?!

Magic "memory barrier" instructions available...Magic "memory barrier" instructions available...

� ...stall processor until write pipe is empty

Ok, now I understandOk, now I understand

� Probably not!

� http://www.cs.umd.edu/~pugh/java/memoryModel/

� “Double-Checked Locking is Broken” Declaration

� See also "release consistency"

Textbook's memory modelTextbook's memory model

� ...is “ what you expect”

� Ok to use simple model for homework, exams

15-410, S’04- 13 -

Synchronization Fundamentals

Two fundamental operationsTwo fundamental operations

� Atomic instruction sequence

� Voluntary de-scheduling

Multiple implementations of eachMultiple implementations of each

� Uniprocessor vs. multiprocessor

� Special hardware vs. special algorithm

� Different OS techniques

� Performance tuning for special cases

Be Be very clearvery clear on features, differences on features, differences

15-410, S’04- 14 -

Synchronization Fundamentals

Multiple client abstractionsMultiple client abstractions

Textbook coversTextbook covers

� Semaphore, critical region, monitor

VeryVery relevant relevant

� Mutex/condition variable (POSIX pthreads)

� Java "synchronized" keyword (3 uses)

15-410, S’04- 15 -

Synchronization Fundamentals

Two Fundamental operationsTwo Fundamental operations

⇒ Atomic instruction sequence

 Voluntary de-scheduling

15-410, S’04- 16 -

Atomic instruction sequence

Problem domainProblem domain

� Short sequence of instructions

� Nobody else may interleave same sequence

� or a "related" sequence

� “Typically” nobody is competing

15-410, S’04- 17 -

Non-interference

Multiprocessor simulation (think: “Sim City”)Multiprocessor simulation (think: “Sim City”)

� Coarse-grained “ turn” (think: hour)

� Lots of activity within turn

� Think: M:N threads, M=objects, N=#processors

MostMost cars don't interact in a turn... cars don't interact in a turn...

� Must model those that do!

15-410, S’04- 18 -

Commerce

Customer 0 Customer 1
cash = store->cash; cash = store->cash;
cash += 50; cash += 20;
wallet -= 50; wallet -= 20;
store->cash = cash; store->cash = cash;

Should the store call the police?
Is deflation good for the economy?

15-410, S’04- 19 -

Commerce – Observations

Instruction sequences are “short”Instruction sequences are “short”

� Ok to force competitors to wait

Probability of collision is "low"Probability of collision is "low"

� Many non-colliding invocations per second

� Must not use an expensive anti-collision approach!

� Oh, just make a system call...

� Common (non-colliding) case must be fast

15-410, S’04- 20 -

Synchronization Fundamentals

Two Fundamental operationsTwo Fundamental operations

 Atomic instruction sequence

 ⇒ Voluntary de-scheduling

15-410, S’04- 21 -

Voluntary de-scheduling

Problem domainProblem domain

� “Are we there yet?”

� “Waiting for Godot”

Example - "Sim City" disaster daemonExample - "Sim City" disaster daemon
while (date < 1906-04-18) cwait(date);
while (hour < 5) cwait(hour);
for (i = 0; i < max_x; i++)

 for (j = 0; j < max_y; j++)

 wreak_havoc(i,j);

15-410, S’04- 22 -

Voluntary de-scheduling

Anti-atomicAnti-atomic

� We want to be “ interrupted”

Making others wait is wrongMaking others wait is wrong

� Wrong for them – we won't be ready for a while

� Wrong for us – we can't be ready until they progress

We don't We don't wantwant exclusion exclusion

We We wantwant others to run - they others to run - they enableenable us us

CPU CPU dede-scheduling is an OS service!-scheduling is an OS service!

15-410, S’04- 23 -

Voluntary de-scheduling

Wait patternWait pattern
 LOCK WORLD

 while (!(ready = scan_world()))

 UNLOCK WORLD

 WAIT_FOR(progress_event)

Your partner/competitor willYour partner/competitor will
 SIGNAL(progress_event)

15-410, S’04- 24 -

Standard Nomenclature

Textbook's code skeleton / namingTextbook's code skeleton / naming
do {

 entry section
 critical section:
 ...computation on shared state...

 exit section
 remainder section:
 ...private computation...

} while (1);

15-410, S’04- 25 -

Standard Nomenclature

What's muted by this picture?What's muted by this picture?

What's What's inin that critical section? that critical section?

� Quick atomic sequence?

� Need for a long sleep?

For now...For now...

� Pretend critical section is brief atomic sequence

� Study the entry/exit sections

15-410, S’04- 26 -

Three Critical Section
Requirements
Mutual ExclusionMutual Exclusion

	 At most one process executing critical section

ProgressProgress

	 Choosing next entrant cannot involve nonparticipants

	 Choosing protocol must have bounded time

Bounded waitingBounded waiting

	 Cannot wait forever once you begin entry protocol

	 ...bounded number of entries by others

15-410, S’04- 27 -

Notation For 2-Process Protocols

Process[i] = “us”Process[i] = “us”

Process[j] = “ the other process”Process[j] = “ the other process”

i, j are i, j are process-localprocess-local variables variables

	 {i,j} = {0,1}

	 j == 1 - i

15-410, S’04- 28 -

Idea #1 - “Taking Turns”

int turn = 0;

while (turn != i)

 ;

...critical section...

turn = j;

Mutual exclusion - yesMutual exclusion - yes

Progress - Progress - nono

	 Strict turn-taking is fatal

	 If P[i] never tries to enter, P[j] will wait forever

15-410, S’04- 29 -

Idea #2 - “Registering Interest”

boolean want[2] = {false, false};

want[i] = true;

while (want[j])

 ;

...critical section...

want[i] = false;

Mutual exclusion – yesMutual exclusion – yes

Progress - Progress - almostalmost

15-410, S’04- 30 -

Failing “Progress”

Process 0 Process 1
want[0] = true;

want[1] = true;
while (want[1]) ;

while (want[0]) ;

It works the rest of the time!

15-410, S’04- 31 -

“Taking Turns When Necessary”

Rubbing two ideas togetherRubbing two ideas together
boolean want[2] = {false, false};

int turn = 0;

want[i] = true;

turn = j;

while (want[j] && turn == j)

;

...critical section...

want[i] = false;

15-410, S’04- 32 -

Proof Sketch of Exclusion

Both in c.s. implies want[i] == want[j] == trueBoth in c.s. implies want[i] == want[j] == true

Thus both while loops exited because “ turn != j”Thus both while loops exited because “ turn != j”

Cannot have (turn == 0 && turn == 1)Cannot have (turn == 0 && turn == 1)

	 So one exited first

w.l.o.g., P0 exited firstw.l.o.g., P0 exited first

	 So turn==0 before turn==1

	 So P1 had to set turn==0 before P0 set turn==1

	 So P0 could not see turn==0, could not exit loop first!

15-410, S’04- 33 -

Proof Sketch Hints

want[i] == want[j] == truewant[i] == want[j] == true
“want[]” fall away, focus on “ turn”

turn[] vs. loop exit...turn[] vs. loop exit...
 What really happens here?

Process 0 Process 1
turn = 1; turn = 0;
while (turn == 1); while (turn == 0);

15-410, S’04- 34 -

Bakery Algorithm

More than two processes?More than two processes?

 Generalization based on bakery/deli counter

� Get monotonically-increasing ticket number from dispenser

� Wait until monotonically-increasing “now serving” == you

Multi-process versionMulti-process version

 Unlike “reality” , two people can get the same ticket
number

 Sort by (ticket number, process number)

15-410, S’04- 35 -

Bakery Algorithm

Phase 1 – Pick a numberPhase 1 – Pick a number

 Look at all presently-available numbers

 Add 1 to highest you can find

Phase 2 – Wait until you hold Phase 2 – Wait until you hold lowestlowest number number

 Well, lowest (ticket, process) number

 Then it's your turn

15-410, S’04- 36 -

Bakery Algorithm

boolean choosing[n] = { false, ... };

int number[n] = { 0, ... } ;

15-410, S’04- 37 -

Bakery Algorithm

Phase 1: Pick a numberPhase 1: Pick a number
choosing[i] = true;

number[i] =

 max(number[0], number[1], ...) + 1;

choosing[i] = false;

Worst case: everybody picks same number!Worst case: everybody picks same number!

But at least latecomers will pick a larger number...But at least latecomers will pick a larger number...

15-410, S’04- 38 -

Bakery Algorithm

Phase 2: Wait to hold lowest numberPhase 2: Wait to hold lowest number
for (j = 0; j < n; ++j) {

 while (choosing[j])

 ;

 while ((number[j] != 0) &&

 ((number[j], j) < (number[i], i)))

 ;

}

...critical section...

number[i] = 0;

15-410, S’04- 39 -

Summary

Memory is Memory is weirdweird

Two fundamental operations - understand!Two fundamental operations - understand!

 Brief exclusion for atomic sequences

 Long-term yielding to get what you want

Three necessary critical-section propertiesThree necessary critical-section properties

Understand these race-condition parties!Understand these race-condition parties!

� Two-process solution

� N-process “Bakery Algorithm”

