
15-410, S’04- 1 -

The Thread
Jan. 26, 2004

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L07_Thread

15-410
“System call abuse for fun & profit”

15-410, S’04- 2 -

Synchronization

Budget your time for Project 1Budget your time for Project 1

� Start getting used to simics right away

This isn't like other programmingThis isn't like other programming

� C (not C++, not Java) – things don't happen for you

� Assembly language

� Hardware isn't clean

Write good codeWrite good code

� Console driver will be used (and extended) in P3

15-410, S’04- 3 -

Road Map

Thread lectureThread lecture

Synchronization lecturesSynchronization lectures

� Probably three

Yield lectureYield lecture

This is importantThis is important

� When you leave here, you will use threads

� Understanding threads will help you understand the kernel

Please make sure you Please make sure you understandunderstand threads threads

� We'll try to help by assigning you P2

15-410, S’04- 4 -

Outline

Textbook chaptersTextbook chapters

� Already: Chapters 1 through 4

� Today: Chapter 5 (roughly)

� Soon: Chapters 7 & 8

� Transactions (7.9) will be deferred

15-410, S’04- 5 -

Outline

Thread = schedulable registersThread = schedulable registers

� (that's all there is)

Why threads?Why threads?

Thread flavors (ratios)Thread flavors (ratios)

(Against) cancellation(Against) cancellation

Race conditionsRace conditions

� 1 simple, 1 ouch

� Make sure you really understand this

15-410, S’04- 6 -

Single-threaded Process

Stack

Code
Data
Heap

Registers

stdin

stdout

timer

15-410, S’04- 7 -

Multi-threaded Process

stdin

stdout

timer
Code
Data
Heap

Stack Registers
Stack Registers
Stack Registers

15-410, S’04- 8 -

What does that mean?

Three stacksThree stacks

� Three sets of “local variables”

Three register setsThree register sets

� Three stack pointers

� Three %eax's (etc.)

Three Three schedulable RAM mutatorsschedulable RAM mutators

� (heartfelt but partial apologies to the ML crowd)

Three potential bad interactionsThree potential bad interactions

15-410, S’04- 9 -

Why threads?

Shared access to data structuresShared access to data structures

ResponsivenessResponsiveness

Speedup on multiprocessorsSpeedup on multiprocessors

15-410, S’04- 10 -

Shared access to data structures

Database server for multiple bank branchesDatabase server for multiple bank branches

� Verify multiple rules are followed

� Account balance

� Daily withdrawal limit

� Multi-account operations (transfer)

� Many accesses, each modifies tiny fraction of database

Server for a multi-player gameServer for a multi-player game

� Many players

� Access (& update) shared world state

� Scan multiple objects

� Update one or two objects

15-410, S’04- 11 -

Shared access to data structures

Process per player?Process per player?

� Processes share objects only via system calls

� Hard to make game objects = operating system objects

Process per game object?Process per game object?

� “Scan multiple objects, update one”

� Lots of message passing between processes

� Lots of memory wasted for lots of processes

� Slow

15-410, S’04- 12 -

Shared access to data structures

ThreadThread per player per player

� Game objects inside single memory address space

� Each thread can access & update game objects

� Shared access to OS objects (files)

Thread-switch is cheapThread-switch is cheap

� Store N registers

� Load N registers

15-410, S’04- 13 -

Responsiveness

“Cancel” button vs. decompressing large JPEG“Cancel” button vs. decompressing large JPEG

� Handle mouse click during 10-second process

� Map (x,y) to “cancel button” area

� Verify that button-release happens in button area of screen

� ...without JPEG decompressor understanding clicks

15-410, S’04- 14 -

Multiprocessor speedup

More CPUs can't help a single-threaded process!More CPUs can't help a single-threaded process!

PhotoShop color dither operationPhotoShop color dither operation

� Divide image into regions

� One dither thread per CPU

� Can (sometimes) get linear speedup

15-410, S’04- 15 -

Kinds of threads

User-space (N:1)User-space (N:1)

Kernel threads (1:1)Kernel threads (1:1)

Many-to-many (M:N)Many-to-many (M:N)

15-410, S’04- 16 -

User-space threads (N:1)

Internal threadingInternal threading

� Thread library adds
threads to a process

� Thread switch just
swaps registers

Code
Data
Heap

Stack
Stack Registers
Stack

15-410, S’04- 17 -

User-space threads (N:1)

No change to operating systemNo change to operating system

System call probably blocks all “ threads”System call probably blocks all “ threads”

� Kernel blocks “ the process”

� (special non-blocking system calls can help)

“Cooperative scheduling” awkward/insufficient“Cooperative scheduling” awkward/insufficient

� Must manually insert many calls to yield()

Cannot go faster on multiprocessor machinesCannot go faster on multiprocessor machines

15-410, S’04- 18 -

Pure kernel threads (1:1)

OS-supported threadingOS-supported threading

� OS knows
thread/process
ownership

� Memory regions shared
& reference-counted

Code
Data
Heap

Stack Registers
Stack Registers
Stack Registers

15-410, S’04- 19 -

Pure kernel threads (1:1)

Every thread is sacredEvery thread is sacred

� Kernel-managed register set

� Kernel stack

� “Real” (timer-triggered) scheduling

FeaturesFeatures

� Program runs faster on multiprocessor

� User-space libraries must be rewritten

� Require kernel memory (PCB, stack)

15-410, S’04- 20 -

Many-to-many (M:N)

Middle groundMiddle ground

� OS provides kernel
threads

� M user threads share N
kernel threads

Code
Data
Heap

Stack
Stack Registers
Stack Registers

15-410, S’04- 21 -

Many-to-many (M:N)

Sharing patternsSharing patterns

� Dedicated

� User thread 12 owns kernel thread 1

� Shared

� 1 kernel thread per hardware CPU

� Kernel thread executes next runnable user thread

� Many variations, see text

FeaturesFeatures

� Great when scheduling works as you expected!

15-410, S’04- 22 -

(Against) Thread Cancellation

Thread cancellationThread cancellation

� We don't want the result of that computation

� (“Cancel button”)

Asynchronous (immediate) cancellationAsynchronous (immediate) cancellation

� Stop execution now

� Free stack, registers

� Poof!

� Hard to garbage-collect resources (open files, ...)

� Invalidates data structure consistency!

15-410, S’04- 23 -

(Against) Thread Cancellation

Deferred ("pretty please") cancellationDeferred ("pretty please") cancellation

� Write down “ thread #314, please go away”

� Threads must check for cancellation

� Or define safe cancellation points

� “Any time I call close() it's ok to zap me”

The only safe way (IMHO)The only safe way (IMHO)

15-410, S’04- 24 -

Race conditions

What you thinkWhat you think
ticket = next_ticket++; /* 0 ⇒ 1 */

What really happens (in general)What really happens (in general)
ticket = temp = next_ticket; /* 0 */

++temp; /* 1, but not visible */

next_ticket = temp; /* 1 is visible */

15-410, S’04- 25 -

Murphy' s Law (of threading)

The world may The world may arbitrarily interleavearbitrarily interleave execution execution

It will choose the It will choose the most painfulmost painful way way

� “Once chance in a million” happens every minute

15-410, S’04- 26 -

What you hope for

T0 T1
tkt = tmp = n_tkt; 0

++tmp; 1
n_tkt = tmp; 1

tkt = tmp = n_tkt; 1
++tmp; 2

n_tkt = tmp; 2

15-410, S’04- 27 -

Race Condition Example

T0 T1
tkt = tmp = n_tkt; 0

tkt = tmp = n_tkt; 0
++tmp; 1

++tmp; 1
n_tkt = tmp; 1

n_tkt = tmp; 1

Two threads have same “ticket”!

15-410, S’04- 28 -

What happened?

Each thread did “something reasonable”Each thread did “something reasonable”

� ...assuming no other thread were touching those objects

� ...assuming “mutual exclusion”

The world is cruelThe world is cruel

� Any possible scheduling mix will happen

15-410, S’04- 29 -

The #! shell-script hack

What's a “shell script”?What's a “shell script”?

� A file with a bunch of (shell-specific) shell commands
 #!/bin/sh

 echo “My hovercraft is full of eels”

 sleep 10

 exit 0

15-410, S’04- 30 -

The #! shell-script hack

What's "#!"?What's "#!"?

� A venerable hack

You sayYou say
execl("/foo/script", "script", "arg1", 0);

/foo/script begins.../foo/script begins...
#!/bin/sh

The kernel does...The kernel does...
execl("/bin/sh" "/foo/script" "arg1" , 0);

The shell doesThe shell does
open("/foo/script", O_RDONLY, 0)

15-410, S’04- 31 -

The setuid invention

U.S. Patent #4,135,240U.S. Patent #4,135,240

� Dennis M. Ritchie

� January 16, 1979

The conceptThe concept

� A program with stored privileges

� When executed, runs with two identities

� invoker's identity

� file owner's identity

15-410, S’04- 32 -

Setuid example - printing a file

GoalsGoals

� Every user can queue files

� Users cannot delete other users' files

SolutionSolution

� Queue directory owned by user printer

� Setuid queue-file program

� Create queue file as user printer

� Copy joe's data as user joe

	 User printer controls user joe's queue access

15-410, S’04- 33 -

Race condition example

Process 0 Process 1
ln -s /bin/lpr /tmp/lpr

run /tmp/lpr
[become printer]
run /bin/sh /tmp/lpr

rm /tmp/lpr
ln -s /my/exploit /tmp/lpr

script = open(“/tmp/lpr”);
execute /my/exploit

15-410, S’04- 34 -

What happened?

IntentionIntention

� Assign privileges to program contents

What happened?What happened?

� Privileges were assigned to program name

� Program name pointed to different contents

How would you fix this?How would you fix this?

15-410, S’04- 35 -

How to solve race conditions?

Carefully analyze operation sequencesCarefully analyze operation sequences

Find subsequences which must be Find subsequences which must be uninterrupteduninterrupted

	 “Critical section”

Use a Use a synchronization mechanismsynchronization mechanism

	 Next time!

15-410, S’04- 36 -

Summary

Thread: What, whyThread: What, why

Thread flavors (ratios)Thread flavors (ratios)

Race conditionsRace conditions

	 Make sure you really understand this

