15-410

“‘System call abuse for fun & profit”

The Process
Jan. 21, 2004

Dave Eckhardt
Bruce Maggs

LO5 Process

15-410, S'04

Synchronization

Project 0 due at midnight
= Please go through the hand-in page now

Anybody reading comp.risks?

Today
— Chapter 4, but not exactly!

15-410, S'04

Outline

Process as pseudo-machine
- (that's all there is)

Process life cycle
Process kernel states
Process kernel state

15-410, S'04

The Computer

15-410, S'04

The Process

15-410, S'04

Process life cycle

Birth

— (or, well, fission)

School

Work

Death

(Nomenclature courtesy of The Godfathers)

15-410, S'04

Birth

Where do new processes come from?
— (Not: under a cabbage leaf, by stork, ...)

What do we need?

- Memory contents
* Text, data, stack

- CPU regqister contents (N of them)

- "I/O ports"
* File descriptors, e.g., stdin/stdout/stderr

— Hidden “stuff”
* timer state, current directory, umask

15-410, S'04

Birth

Intimidating?

How to specify all of that stuff?
- What is your {name,quest,favorite_color}?

Gee, we already have one process we like...

15-410, S'04

Birth — fork() - 1

Memory
- Copy all of it
— Maybe using VM tricks so it' s cheaper

Registers

— Copy all of them
* All but one: parent learns child's process ID, child gets O

-0- 15-410, S'04

Birth — fork() - 2

File descriptors
— Copy all of them
- Can't copy the files!
- Copy references to open-file state

Hidden stuff

- Do whatever is "obvious"

Result
- Original, “parent”, process
- Fully-specified “child” process, with O fork() parameters

- 10 - 15-410, S'04

Now what?

Two copies of the same process is boring

Transplant surgery!

11 -

Implant new memory!
* New program text

Implant new registers!
* Old ones don't point well into the new memory

Keep (most) file descriptors
* Good for cooperation/delegation

Hidden state?
* Do what's “obvious”

15-410, S'04

Original Process

15-410, S'04

Toss Heap, Data

15-410, S'04

Load New Code, Data From File

- 14 - 15-410, S'04

Reset Stack, Heap

15-410, S'04

Fix “Stuff”

-16 - 15-410, S'04

Initialize Registers

_17 -

15-410, S'04

Begin Execution

- 18 -

15-410, S'04

What's This Procedure Called?

Int execve(
char *path,
char *argv| |,
char *envp[])

-19 - 15-410, S'04

Birth - other ways

There is another way
- Well, two

spawn()
- Carefully specify all features of new process
- Don't need to copy stuff you will immediately toss

Plan 9 rfork() / Linux clone()

— Build new process from old one
— Specify which things get shared vs. copied

=20 -

15-410, S'04

School

Old process called
execve(

- 21 -

C
C
C

nar *path,
nar *argv| |,

nar *envpl |);

Result is
char **environ;

main(int argc,
char *argv] |)

{
}

15-410, S'04

School

How does the magic work?
- 15-410 motto: No magic

Kernel process setup: we saw...

— Toss old data memory
- Toss old stack memory
- Load executable file

Also...

_29 .

15-410, S'04

The Stack!

Kernel builds stack for new process
- Transfers argv[] and envp[] to top of new process stack
- Hand-crafts stack frame for __main()

- Sets registers
* Stack pointer (to top frame)
* Program counter (to start of __main())

- 23 - 15-410, S'04

Work

Process states

- Running
* User mode
* Kernel mode

- Runnable
* User mode
* Kernel mode
- Sleeping
* In condition_wait(), more or less

_ 24 -

15-410, S'04

Work

Other process states
- Forking
- Zombie

“Exercise for the reader”
- Draw the state transition diagram

_ 925 -

15-410, S'04

Death

Voluntary
void exit(int reason);

Software exception
- SIGXCPU — used "too much" CPU time

Hardware exception
- SIGSEGV - no memory there for you!

- 26 -

15-410, S'04

Death

kill(pid, sig);
AC L kill(getpid(), SIGINT);

Start logging
kill(daemon_pid, SIGUSR1);

% kill -USR1 33

Lost in Space
Kill(Will_Robinson, SIGDANGER);

— | apologize to IBM for lampooning their serious signal
* No, | apologize for that apology...

_ 27 -

15-410, S'04

Process cleanup

Resource release

- Open files: close()
* TCP: 2 minutes (or more)
* Solaris disk offline - forever (* None shall pass!”)

- Memory: release

Accounting
— Record resource usage in a magic file

Gone?

- 28 -

15-410, S'04

“All You Zombies...”

Zombie process
- Process state reduced to exit code

— Wait around until parent calls wait()
* Copy exit code to parent memory
* Delete PCB

- 29 -

15-410, S'04

Kernel process state

The dreaded "PCB"
— (polychlorinated biphenol?)

Process Control Block

- “Everything without a memory address”
* Kernel management information
* Scheduler state
* The “stuff”

- 30 - 15-410, S'04

Sample PCB contents

Pointer to CPU register save area
Process number, parent process number
Countdown timer value

Memory segment info
- User memory segment list
- Kernel stack reference

Scheduler info
— linked list slot, priority, “sleep channel”

- 31 -

15-410, S'04

Conceptual Memory Layout

-32 - 15-410, S'04

Physical Memory Layout

User I\/Iemory_ 240 MB

Kernel Memory - 16 MB

- 33 - 15-410, S'04

Ready to Implement All This?

Not so complicated...
- getpid()
- fork()
- exec()
- wait()
~- exit()

What could possibly go wrong?

- 34 -

15-410, S'04

Summary

Parts of a Process
= Virtual — Memory regions, registers, 1/0 “ports”
= Physical — Memory pages, registers, 1/O devices

Birth, School, Work, Death

“Big Picture” of memory — both of them
= (Numbers & arrangement are 15-410—specific)

- 35 - 15-410, S'04

