
15-410, F'171

Security Applications
Dec. 1, 2017

Dave EckhardtDave Eckhardt

Dave O'HallaronDave O'Hallaron

PGP diagram shamelessly stolen from 15-441

SecurID picture clipped from rsa.com

L35_Security

15-410
“...What about gummy bears?...”

Synchronization

P3extra and P4 hand-in directories have been createdP3extra and P4 hand-in directories have been created
 Please check IMMEDIATELY to make sure yours is there

 And the one you are expecting!
 If not, you owe me something

 Please make sure you can store files there
 Check disk space

Faculty Course EvaluationsFaculty Course Evaluations
 http://www.cmu.edu/hub/fce or maybe some other URL

Keep an eye out for Homework 2 releaseKeep an eye out for Homework 2 release
 Due next Friday...no late days

Don't forget about the book report!Don't forget about the book report!
 Due next Friday...

15-410, F'173

Synchronization

A fortuneA fortune

Image credit: Adam Weis

15-410, F'174

Outline

TodayToday
 Warm-up: Password file
 One-time passwords
 Review: private-key, public-key crypto
 Kerberos
 SSL
 PGP
 Biometrics

DisclaimerDisclaimer
 Presentations will be key ideas, not exact protocols

 “Protocols discussed in lecture are larger than they appear”

15-410, F'175

Password File

GoalGoal
 User memorizes a small key
 User presents key, machine verifies it

Wrong approachWrong approach
 Store keys (passwords) in file
 Why is this bad? What is at risk?

alice : Whimsy33Fish/
bob : secret
chas : secret

15-410, F'176

Hashed Password File

BetterBetter
 Store hash(key)

 hash(“Whimsy33Fish/”) ⇒ X93f3ZaWhT
 hash(“secret”) ⇒ fg8ReCFySk

 User presents key
 Login program computes hash(key), compares to file

 Note: we use a collision-resistant (cryptographic) hash

alice : X93f3ZaWhT
bob : fg8ReCFySk
chas : fg8ReCFySk

15-410, F'177

Hashed Password File

Original Unix password file was made publicOriginal Unix password file was made public
 Didn't contain keys, only key hashes

Still vulnerable to Still vulnerable to dictionary attackdictionary attack
 Cracker computes hash(“a”), hash(“b”), stores reverse

 unhash(“54GtYuREbk”) ⇒ “a”
 unhash(“PoLka67vab”) ⇒ “b”

 Once computed, hash ⇒ password list attacks many users
 unhash(“fg8ReCFySk”) ⇒ “secret” hits Bob and Chas
 Note: cracker may quit before hash(“Whimsy33Fish/”)

Hashed file is “arguably less wrong”Hashed file is “arguably less wrong”
 Can we make the cracker's job even harder?

15-410, F'178

Salted Hashed Password File

Choose random number when user sets passwordChoose random number when user sets password
 Store #, hash(#,key)

 hash(“Xz Whimsy33Fish/”) ⇒ uiR34ExWmT
 hash(“p0 secret”) ⇒ 998ueTRvMx
 hash(“9Q secret”) ⇒ opTkr7Sfh3

User presents keyUser presents key
 Login looks up user, retrieves # and hash(#,key)
 Login computes hash(#,typed-key), compares to file

alice : Xz : uiR34ExWmT
bob : p0 : 998ueTRvMx
chas : 9Q : opTkr7Sfh3

15-410, F'179

Salted Hashed Password File

Evaluation of “salt” extension?Evaluation of “salt” extension?
 Extra work for the user = ?
 Extra work for login program = ?
 Extra work for cracker = ?

15-410, F'1710

Salted Hashed Password File

Evaluation of “salt” extensionEvaluation of “salt” extension
 Zero extra work for user

 User still remembers just the password
 Salt is invisible

 Trivial extra space & work for login program
 Store a few more bytes
 Hash a slightly-longer string

 Pre-computed dictionary must be much larger
 Without salt: cracker must hash all “words”
 With salt: cracker must hash (all “words”) X (all #'s)

» 2 random salt bytes [A-Za-z0-9] increases work 3844-fold

» Linear work for target, exponential work for cracker!

Can we do even better?Can we do even better?

15-410, F'1711

Shadow Salted Hashed Password File

Use “bcrypt”Use “bcrypt”
 ...a deliberately-super-slow salted hash-function family
 ...and then protect the password file after all

““Defense in depth” - Cracker mustDefense in depth” - Cracker must
 Either

 Compute enormous all-word/all-salt dictionary
 Break system security to get hashed password file
 Scan through enormous all-word/all-salt dictionary

 Or
 Break system security to get hashed password file
 Run all-word attack on each user in password file

There may be easier ways into the systemThere may be easier ways into the system
 ...such as bribing a user!

15-410, F'1712

One-time passwords

What if somebody What if somebody doesdoes eavesdrop a password? eavesdrop a password?
 Can they undetectably impersonate you forever?

““One-time passwords”One-time passwords”
 System (and user!) store key list

 User presents head of list, system verifies
 User and system both destroy key at head of list
 Eavesdropper learns nothing with a future use

15-410, F'1713

One-time passwords

What if somebody What if somebody doesdoes eavesdrop a password? eavesdrop a password?
 Can they undetectably impersonate you forever?

““One-time passwords”One-time passwords”
 System (and user!) store key list

 User presents head of list, system verifies
 User and system both destroy key at head of list
 Eavesdropper learns nothing with a future use

Alternate approachAlternate approach
 Portable cryptographic clock

 Sealed box which displays E(time,key)
 Only box & server know the key
 User types in displayed value as a password

15-410, F'1714

One-time passwords

What if somebody What if somebody doesdoes eavesdrop a password? eavesdrop a password?
 Can they undetectably impersonate you forever?

““One-time passwords”One-time passwords”
 System (and user!) store key list

 User presents head of list, system verifies
 User and system both destroy key at head of list
 Eavesdropper learns nothing with a future use

Alternate approachAlternate approach
 Portable cryptographic clock

 Sealed box which displays E(time,key)
 Only box & server know the key

» Until 2011 attack on Lockheed Martin!
 User types in displayed value as a password

15-410, F'1715

Cryptography on One Slide

Symmetric / private-key cipherSymmetric / private-key cipher
ciphertext = E(cleartext, Key)
cleartext = E(ciphertext, Key)
Examples: DES, IDEA, Threefish, AES

Asymmetric / public-key cipher (aka “magic”)Asymmetric / public-key cipher (aka “magic”)
ciphertext = E(cleartext, Key1)
cleartext = D(ciphertext, Key2)
Examples: RSA, ElGamal, Elliptic curve

15-410, F'1716

Reminder: Public Key Signatures

Write a documentWrite a document

Encrypt it with your private keyEncrypt it with your private key
 Nobody else can do that

Transmit plaintext Transmit plaintext and ciphertextand ciphertext of document of document

Anybody can decrypt with your public keyAnybody can decrypt with your public key
 If they match, the sender knew your private key

 ...sender was you, more or less

ActuallyActually
 send E(hash(msg), Kprivate)

15-410, F'1717

Reminder: Comparison

Private-key algorithmsPrivate-key algorithms
 Fast crypto, small keys
 Secret-key-distribution problem

Public-key algorithmsPublic-key algorithms
 “Telephone directory” key distribution
 Slow crypto, keys too large to memorize

Can we get the best of both?Can we get the best of both?

15-410, F'1718

Kerberos

GoalsGoals
 Use fast private-key encryption
 Require users to remember one small key
 Authenticate & encrypt for N users, M servers

ProblemProblem
 Private-key encryption requires shared key to

communicate
 Can't deploy & use system with NxM keys!

IntuitionIntuition
 Trusted third party knows single key of every user, server
 Distributes temporary keys to (user,server) on demand

15-410, F'1719

Not Really Kerberos

Authenticating to a “server”Authenticating to a “server”
 Client = de0u, server = “afs@ANDREW.CMU.EDU”

Client contacts server with a Client contacts server with a ticketticket
 Contains identity of holder

 Server will use identity for access control checks

 Contains ephemeral session key for encryption
 Roll dice to generate a key for today, then throw it away
 Server will decrypt messages from client using this key
 Also provides authentication – only client can encrypt with

that key

 Contains time of issuance
 Ticket “times out”
 Client must get another one – re-prove it knows its key

15-410, F'1720

Not Really Kerberos

Ticket formatTicket format
 Ticket={client,time,Ksession}Ks

 {client, time, session key} DES-encrypted with server's key

ObservationsObservations
 Server knows Ks, can decrypt & understand the ticket

 Clients can't fake tickets, since they don't know Ks

 Session key is provided to server via encrypted channel
 Eavesdroppers can't learn session key
 Client-server communication using Ks will be secure

How do clients get tickets?How do clients get tickets?
 ?

15-410, F'1721

Not Really Kerberos

Ticket formatTicket format
 Ticket={client,time,Ksession}Ks

 {client, time, session key} DES-encrypted with server's key

ObservationsObservations
 Server knows Ks, can decrypt & understand the ticket

 Clients can't fake tickets, since they don't know Ks

 Session key is provided to server via encrypted channel
 Eavesdroppers can't learn session key
 Client-server communication using Ks will be secure

How do clients get tickets?How do clients get tickets?
 Only server & “Kerberos Distribution Center” know Ks...

15-410, F'1722

Not Really Kerberos

Client sends to Key Distribution CenterClient sends to Key Distribution Center
 “I want a ticket for the printing service”
 {client, server, time}

KDC sends client two thingsKDC sends client two things
 {Ksession,server,time}Kc

 Client can decrypt this to learn session key
 Client knows when the ticket will expire

 Ticket={client,time,Ksession}Ks
 Client cannot decrypt ticket
 Client can transmit ticket to server as opaque data

15-410, F'1723

Not Really Kerberos

Results (client)Results (client)
 Client has session key for encryption

 Can trust that only desired server knows it

Results (server)Results (server)
 Server knows identity of client
 Server knows how long to trust that identity
 Server has session key for encryption

 Data which decrypt meaningfully must be from that client

15-410, F'1724

Not Really Kerberos

Results (architecture)Results (architecture)
 N users, M servers
 System has N+M keys

 Like a public-key crypto system
 But fast private-key ciphers are used

 Each entity remembers only one (small) key
 “Single-sign on”: one password per user

Availability issue?Availability issue?
 What could make the system stop authenticating?

15-410, F'1725

Securing a Kerberos Realm

KDC (Kerberos Distribution Center)KDC (Kerberos Distribution Center)
 Single point of failure

 If it's down, clients can't get tickets to contact more servers...

» Ok, fine, multiple instances of server (master/slave)

15-410, F'1726

Securing a Kerberos Realm

KDC (Kerberos Distribution Center)KDC (Kerberos Distribution Center)
 Single point of failure

 If it's down, clients can't get tickets to contact more servers...

» Ok, fine, multiple instances of server (master/slave)

 Each server knows all keys in system
 Each server is a point of compromise

» Deployed in locked boxes in (multiple) machine rooms

 Very delicate to construct & deploy
 Turn off most Internet services
 Maybe boot from read-only media
 Maybe booting requires entry of master password
 Unwise to back up key database to “shelf full of tapes”

15-410, F'1727

SSL

GoalsGoals
 Fast, secure communication
 Any client can contact any server on planet

ProblemsProblems
 There is no single trusted key server for the whole planet

 Can't use Kerberos approach

 Solution: public-key cryptography?

15-410, F'1728

SSL

GoalsGoals
 Fast, secure communication
 Any client can contact any server on planet

ProblemsProblems
 There is no single trusted key server for the whole planet

 Can't use Kerberos approach

 Solution: public-key cryptography?
 Interesting issue: public key algorithms are slow
 Huge problem: there is no global public-key directory

15-410, F'1729

SSL Approach (“Not exactly”)

ApproachApproach
 Use private-key/symmetric encryption for speed
 Swap symmetric session keys via public-key crypto

 Temporary random session keys similar to Kerberos

StepsSteps
 Client looks up server's public key in global directory
 Client generates random AES session key
 Client encrypts session key using server's RSA public key
 Now client & server both know session key
 Client knows it is talking to the desired server

 After all, nobody else can do the decrypt...

15-410, F'1730

SSL Approach (“Not exactly”)

ProblemProblem
 There is no global key directory
 Would be a single point of compromise

 False server keys enable server spoofing

 If you had a copy of one it would be out of date
 Some server would be deployed during your download

ApproachApproach
 Replace global directory with chain of trust
 Servers present their own keys directly to clients
 Keys are signed by “well-known” certifiers

15-410, F'1731

Not SSL

Server “certificate”Server “certificate”
 “To whom it may concern, whoever can decrypt messages

encrypted with public key AAFD01234DE34BEEF997C is
www.cmu.edu”

Protocol operationProtocol operation
 Client calls server, requests certificate
 Server sends certificate
 Client generates private-key session key

 Client sends {Ksession}Kserver to server

 If server can decrypt and use Ksession, it must be legit

Any problem...?Any problem...?

15-410, F'1732

SSL Certificates

How did we know to trust that certificate?How did we know to trust that certificate?

Certificates are signed by Certificates are signed by certificate authoritiescertificate authorities
 “Whoever can decrypt messages encrypted with public

key AAFD01234DE34BEEF997C is www.cmu.edu
 Signed, Baltimore CyberTrust

» SHA-256 hash of statement: 904ffa3bb39348aas

» Signature of hash: 433432af33551a343c143143fd11

Certificate verificationCertificate verification
 Compute SHA-256 hash of server's key statement
 Look up public key of Baltimore CyberTrust in global

directory...oops!

15-410, F'1733

SSL Certificates

How did we know to trust the server's certificate?How did we know to trust the server's certificate?
 Certificates are signed by certificate authorities
 Browser vendor ships CA public keys in browser

 Check your browser's security settings, see who you trust!

 “Chain of trust”
 Mozilla.org certifies Baltimore Cybertrust
 Baltimore Cybertrust certifies, ex., www.cmu.edu

15-410, F'1734

SSL Certificates

How did we know to trust the server's certificate?How did we know to trust the server's certificate?
 Certificates are signed by certificate authorities
 Browser vendor ships CA public keys in browser

 Check your browser's security settings, see who you trust!

 “Chain of trust”
 Mozilla.org certifies Baltimore Cybertrust
 Baltimore Cybertrust certifies, ex., www.cmu.edu
 Say, who actually certifies www.cmu.edu?

15-410, F'1735

SSL Certificates

How did we know to trust the server's certificate?How did we know to trust the server's certificate?
 Certificates are signed by certificate authorities
 Browser vendor ships CA public keys in browser

 Check your browser's security settings, see who you trust!

 “Chain of trust”
 Mozilla.org certifies Baltimore Cybertrust
 Baltimore Cybertrust certifies, ex., www.cmu.edu
 Say, who actually certifies www.cmu.edu?

» As of 2017-11-30: “COMODO CA Limited”

» You've heard of them, right? Household name?

15-410, F'1736

SSL Certificates

How did we know to trust the server's certificate?How did we know to trust the server's certificate?
 Certificates are signed by certificate authorities
 Browser vendor ships CA public keys in browser

 Check your browser's security settings, see who you trust!

 “Chain of trust”
 Mozilla.org certifies Baltimore Cybertrust
 Baltimore Cybertrust certifies, ex., www.cmu.edu
 Say, who actually certifies www.cmu.edu?

» As of 2017-11-30: “COMODO CA Limited”

» You've heard of them, right? Household name?

» How about “NetLock Halozatbiztonsagi Kft.”???

15-410, F'1737

SSL Certificates

How did we know to trust the server's certificate?How did we know to trust the server's certificate?
 Certificates are signed by certificate authorities
 Browser vendor ships CA public keys in browser

 Check your browser's security settings, see who you trust!

 “Chain of trust”
 Mozilla.org certifies Baltimore Cybertrust
 Baltimore Cybertrust certifies, ex., www.cmu.edu
 Say, who actually certifies www.cmu.edu?

» As of 2017-11-30: “COMODO CA Limited”

» You've heard of them, right? Household name?

» How about “NetLock Halozatbiztonsagi Kft.”???

 2010 update – CA's issue fake certs to police/spy
agencies

15-410, F'1738

SSL Certificates

How did we know to trust the server's certificate?How did we know to trust the server's certificate?
 Certificates are signed by certificate authorities
 Browser vendor ships CA public keys in browser

 Check your browser's security settings, see who you trust!

 “Chain of trust”
 Mozilla.org certifies Baltimore Cybertrust
 Baltimore Cybertrust certifies, ex., www.cmu.edu
 Say, who actually certifies www.cmu.edu?

» As of 2017-11-30: “COMODO CA Limited”

» You've heard of them, right? Household name?

» How about “NetLock Halozatbiztonsagi Kft.”???

 2010 update – CA's issue fake certs to police/spy
agencies

 2011 update – CA's cracked: “InstantSSL.it”, “Diginotar”
 2012 update – UTA/Stanford AllYourSSLAreBelongTo.us

15-410, F'1739

PGP

GoalGoal
 “Pretty Good Privacy” for the masses
 Without depending on a central authority

ApproachApproach
 Users generate public-key key pairs
 Public keys stored “on the web” (pgpkeys.mit.edu)

 Global directory (untrusted, like a whiteboard)

 We have covered how to send/receive/sign secret e-mail

ProblemProblem
 How do I trust a public key I get from “on the web”?

15-410, F'1740

“On the Web”

PGP key server protocolPGP key server protocol
 ???: Here is de0u@andrew.cmu.edu's latest public key!

 Server: “Great, I'll provide it when anybody asks!”

 Alice: What is de0u@andrew.cmu.edu's public key?
 Server: Here are 8 possibilities...you decide which to trust!

How do I How do I trusttrust a public key I get “from the web”? a public key I get “from the web”?
 “Certificate Authority” approach has issues

 They typically charge $50-$1000 per certificate per year
 They are businesses...governments can lean on them

» ...to present false keys...

» ...to delete your key from their directory...

» ...to refuse to sign your key...

15-410, F'1741

PGP

““WebWeb of trust” of trust”
 Dave E. and Dave O'Hallaron swap public keys (“key-

signing party”)
 Dave O. signs Dave E.'s public key

 “937022D7 is the fingerprint of de0u@andrew.cmu.edu's
key” -- sincerely, 77432900

 Publishes signature on one or more web servers

 Dave O. and Andrew Moore swap public keys (at lunch)

Using the web of trustUsing the web of trust
 Andrew fetches Dave E's public key from the web

 Verifies Dave O's signature on it

 Andrew can safely send secret mail to Dave E.
 Andrew can verify digital signatures from Dave E.

15-410, F'1742

PGP “key rings”

Private key ringPrivate key ring
 All of your private keys
 Each encrypted with a “pass phrase”

 Should be longer & more random than a password
 If your private keys leak out, you can't easily change them

Public key ringPublic key ring
 Public keys of various people

 Each has one or more signatures
 Some are signed by you – your PGP will use without

complaint

15-410, F'1743

PGP Messages

Message goalsMessage goals
 Decryptable by multiple people (recipients of an e-mail)
 Large message bodies decryptable quickly
 Message size not proportional to number of receivers

Message structureMessage structure
 One message body, encrypted with a symmetric cipher

 Using a random “session” key

 N key packets
 Session key public-key encrypted with one recipient's key

15-410, F'1744

Not PGP

SA(H(M))

EK(M, SA(H(M)))

Alice

EB(K), EK(M, SA(H(M)))

K

VA(SA(H(M)))

M

Bob

DB(EB(K)) DK(EK(M, SA(H(M))))

K SA(H(M))

H(M)

Note: on this slide, EK(a, b) means ...“a and b”...with K
(Notation closer to textbook's than to mine)

15-410, F'1745

Biometrics

ConceptConcept
 Tie authorization to who you are

 Not what you know – can be copied

 Hard to impersonate a retina
 Or a fingerprint

15-410, F'1746

Biometrics

ConceptConcept
 Tie authorization to who you are

 Not what you know – can be copied

 Hard to impersonate a retina
 Or a fingerprint

Right?Right?

15-410, F'1747

Biometrics

ConceptConcept
 Tie authorization to who you are

 Not what you know – can be copied

 Hard to impersonate a retina
 Or a fingerprint

Right?Right?
 What about gummy bears?

15-410, F'1748

Biometrics

ConceptConcept
 Tie authorization to who you are

 Not what you know – can be copied

 Hard to impersonate a retina
 Or a fingerprint

Right?Right?
 What about gummy bears?
 What about carjackers?

15-410, F'1749

Summary

Many threatsMany threats

Many techniquesMany techniques

““The devil is in the details”The devil is in the details”

Just because it “works” doesn't mean it's right!Just because it “works” doesn't mean it's right!

Open algorithms, open sourceOpen algorithms, open source

15-410, F'1750

Further Reading

PGP PathfinderPGP Pathfinder
 http://pgp.cs.uu.nl/paths/A6E45ECC/to/1E42B367.html

Kerberos: An Authentication Service for ComputerKerberos: An Authentication Service for Computer
NetworksNetworks

 B. Clifford Neuman, Theodore Ts'o
 USC/ISI Technical Report ISI/RS-94-399

15-410, F'1751

Further Reading

““Certified Lies: Detecting and Defeating GovernmentCertified Lies: Detecting and Defeating Government
Interception Attacks Against SSL”Interception Attacks Against SSL”

 http://files.cloudprivacy.net/ssl-mitm.pdf

““Creating a rogue CA certificate”Creating a rogue CA certificate”
 http://www.phreedom.org/research/rogue-ca/

““A Post Mortem on the Iranian DigiNotar Attack”A Post Mortem on the Iranian DigiNotar Attack”
 https://www.eff.org/deeplinks/2011/09/post-mortem-iranian-diginotar-attack

““Certificate stolen from Malaysian gov used to signCertificate stolen from Malaysian gov used to sign
malware”malware”

 http://www.theregister.co.uk/2011/11/14/stolen_certificate_discovered/

““The most dangerous code in the world: ValidatingThe most dangerous code in the world: Validating
SSL certificates in non-browser software”SSL certificates in non-browser software”

 http://www.cs.utexas.edu/%7Eshmat/shmat_ccs12.pdf

15-410, F'1752

Further Reading

Impact of Artificial “Gummy” Fingers on FingerprintImpact of Artificial “Gummy” Fingers on Fingerprint
SystemsSystems

 Matsumoto et al.
 http://cryptome.org/gummy.htm

Amputation hazards of biometricsAmputation hazards of biometrics
 http://www.theregister.co.uk/2005/04/04/fingerprint_merc_chop/

