
15-410, F'171

Security Applications
Dec. 1, 2017

Dave EckhardtDave Eckhardt

Dave O'HallaronDave O'Hallaron

PGP diagram shamelessly stolen from 15-441

SecurID picture clipped from rsa.com

L35_Security

15-410
“...What about gummy bears?...”

Synchronization

P3extra and P4 hand-in directories have been createdP3extra and P4 hand-in directories have been created
 Please check IMMEDIATELY to make sure yours is there

 And the one you are expecting!
 If not, you owe me something

 Please make sure you can store files there
 Check disk space

Faculty Course EvaluationsFaculty Course Evaluations
 http://www.cmu.edu/hub/fce or maybe some other URL

Keep an eye out for Homework 2 releaseKeep an eye out for Homework 2 release
 Due next Friday...no late days

Don't forget about the book report!Don't forget about the book report!
 Due next Friday...

15-410, F'173

Synchronization

A fortuneA fortune

Image credit: Adam Weis

15-410, F'174

Outline

TodayToday
 Warm-up: Password file
 One-time passwords
 Review: private-key, public-key crypto
 Kerberos
 SSL
 PGP
 Biometrics

DisclaimerDisclaimer
 Presentations will be key ideas, not exact protocols

 “Protocols discussed in lecture are larger than they appear”

15-410, F'175

Password File

GoalGoal
 User memorizes a small key
 User presents key, machine verifies it

Wrong approachWrong approach
 Store keys (passwords) in file
 Why is this bad? What is at risk?

alice : Whimsy33Fish/
bob : secret
chas : secret

15-410, F'176

Hashed Password File

BetterBetter
 Store hash(key)

 hash(“Whimsy33Fish/”) ⇒ X93f3ZaWhT
 hash(“secret”) ⇒ fg8ReCFySk

 User presents key
 Login program computes hash(key), compares to file

 Note: we use a collision-resistant (cryptographic) hash

alice : X93f3ZaWhT
bob : fg8ReCFySk
chas : fg8ReCFySk

15-410, F'177

Hashed Password File

Original Unix password file was made publicOriginal Unix password file was made public
 Didn't contain keys, only key hashes

Still vulnerable to Still vulnerable to dictionary attackdictionary attack
 Cracker computes hash(“a”), hash(“b”), stores reverse

 unhash(“54GtYuREbk”) ⇒ “a”
 unhash(“PoLka67vab”) ⇒ “b”

 Once computed, hash ⇒ password list attacks many users
 unhash(“fg8ReCFySk”) ⇒ “secret” hits Bob and Chas
 Note: cracker may quit before hash(“Whimsy33Fish/”)

Hashed file is “arguably less wrong”Hashed file is “arguably less wrong”
 Can we make the cracker's job even harder?

15-410, F'178

Salted Hashed Password File

Choose random number when user sets passwordChoose random number when user sets password
 Store #, hash(#,key)

 hash(“Xz Whimsy33Fish/”) ⇒ uiR34ExWmT
 hash(“p0 secret”) ⇒ 998ueTRvMx
 hash(“9Q secret”) ⇒ opTkr7Sfh3

User presents keyUser presents key
 Login looks up user, retrieves # and hash(#,key)
 Login computes hash(#,typed-key), compares to file

alice : Xz : uiR34ExWmT
bob : p0 : 998ueTRvMx
chas : 9Q : opTkr7Sfh3

15-410, F'179

Salted Hashed Password File

Evaluation of “salt” extension?Evaluation of “salt” extension?
 Extra work for the user = ?
 Extra work for login program = ?
 Extra work for cracker = ?

15-410, F'1710

Salted Hashed Password File

Evaluation of “salt” extensionEvaluation of “salt” extension
 Zero extra work for user

 User still remembers just the password
 Salt is invisible

 Trivial extra space & work for login program
 Store a few more bytes
 Hash a slightly-longer string

 Pre-computed dictionary must be much larger
 Without salt: cracker must hash all “words”
 With salt: cracker must hash (all “words”) X (all #'s)

» 2 random salt bytes [A-Za-z0-9] increases work 3844-fold

» Linear work for target, exponential work for cracker!

Can we do even better?Can we do even better?

15-410, F'1711

Shadow Salted Hashed Password File

Use “bcrypt”Use “bcrypt”
 ...a deliberately-super-slow salted hash-function family
 ...and then protect the password file after all

““Defense in depth” - Cracker mustDefense in depth” - Cracker must
 Either

 Compute enormous all-word/all-salt dictionary
 Break system security to get hashed password file
 Scan through enormous all-word/all-salt dictionary

 Or
 Break system security to get hashed password file
 Run all-word attack on each user in password file

There may be easier ways into the systemThere may be easier ways into the system
 ...such as bribing a user!

15-410, F'1712

One-time passwords

What if somebody What if somebody doesdoes eavesdrop a password? eavesdrop a password?
 Can they undetectably impersonate you forever?

““One-time passwords”One-time passwords”
 System (and user!) store key list

 User presents head of list, system verifies
 User and system both destroy key at head of list
 Eavesdropper learns nothing with a future use

15-410, F'1713

One-time passwords

What if somebody What if somebody doesdoes eavesdrop a password? eavesdrop a password?
 Can they undetectably impersonate you forever?

““One-time passwords”One-time passwords”
 System (and user!) store key list

 User presents head of list, system verifies
 User and system both destroy key at head of list
 Eavesdropper learns nothing with a future use

Alternate approachAlternate approach
 Portable cryptographic clock

 Sealed box which displays E(time,key)
 Only box & server know the key
 User types in displayed value as a password

15-410, F'1714

One-time passwords

What if somebody What if somebody doesdoes eavesdrop a password? eavesdrop a password?
 Can they undetectably impersonate you forever?

““One-time passwords”One-time passwords”
 System (and user!) store key list

 User presents head of list, system verifies
 User and system both destroy key at head of list
 Eavesdropper learns nothing with a future use

Alternate approachAlternate approach
 Portable cryptographic clock

 Sealed box which displays E(time,key)
 Only box & server know the key

» Until 2011 attack on Lockheed Martin!
 User types in displayed value as a password

15-410, F'1715

Cryptography on One Slide

Symmetric / private-key cipherSymmetric / private-key cipher
ciphertext = E(cleartext, Key)
cleartext = E(ciphertext, Key)
Examples: DES, IDEA, Threefish, AES

Asymmetric / public-key cipher (aka “magic”)Asymmetric / public-key cipher (aka “magic”)
ciphertext = E(cleartext, Key1)
cleartext = D(ciphertext, Key2)
Examples: RSA, ElGamal, Elliptic curve

15-410, F'1716

Reminder: Public Key Signatures

Write a documentWrite a document

Encrypt it with your private keyEncrypt it with your private key
 Nobody else can do that

Transmit plaintext Transmit plaintext and ciphertextand ciphertext of document of document

Anybody can decrypt with your public keyAnybody can decrypt with your public key
 If they match, the sender knew your private key

 ...sender was you, more or less

ActuallyActually
 send E(hash(msg), Kprivate)

15-410, F'1717

Reminder: Comparison

Private-key algorithmsPrivate-key algorithms
 Fast crypto, small keys
 Secret-key-distribution problem

Public-key algorithmsPublic-key algorithms
 “Telephone directory” key distribution
 Slow crypto, keys too large to memorize

Can we get the best of both?Can we get the best of both?

15-410, F'1718

Kerberos

GoalsGoals
 Use fast private-key encryption
 Require users to remember one small key
 Authenticate & encrypt for N users, M servers

ProblemProblem
 Private-key encryption requires shared key to

communicate
 Can't deploy & use system with NxM keys!

IntuitionIntuition
 Trusted third party knows single key of every user, server
 Distributes temporary keys to (user,server) on demand

15-410, F'1719

Not Really Kerberos

Authenticating to a “server”Authenticating to a “server”
 Client = de0u, server = “afs@ANDREW.CMU.EDU”

Client contacts server with a Client contacts server with a ticketticket
 Contains identity of holder

 Server will use identity for access control checks

 Contains ephemeral session key for encryption
 Roll dice to generate a key for today, then throw it away
 Server will decrypt messages from client using this key
 Also provides authentication – only client can encrypt with

that key

 Contains time of issuance
 Ticket “times out”
 Client must get another one – re-prove it knows its key

15-410, F'1720

Not Really Kerberos

Ticket formatTicket format
 Ticket={client,time,Ksession}Ks

 {client, time, session key} DES-encrypted with server's key

ObservationsObservations
 Server knows Ks, can decrypt & understand the ticket

 Clients can't fake tickets, since they don't know Ks

 Session key is provided to server via encrypted channel
 Eavesdroppers can't learn session key
 Client-server communication using Ks will be secure

How do clients get tickets?How do clients get tickets?
 ?

15-410, F'1721

Not Really Kerberos

Ticket formatTicket format
 Ticket={client,time,Ksession}Ks

 {client, time, session key} DES-encrypted with server's key

ObservationsObservations
 Server knows Ks, can decrypt & understand the ticket

 Clients can't fake tickets, since they don't know Ks

 Session key is provided to server via encrypted channel
 Eavesdroppers can't learn session key
 Client-server communication using Ks will be secure

How do clients get tickets?How do clients get tickets?
 Only server & “Kerberos Distribution Center” know Ks...

15-410, F'1722

Not Really Kerberos

Client sends to Key Distribution CenterClient sends to Key Distribution Center
 “I want a ticket for the printing service”
 {client, server, time}

KDC sends client two thingsKDC sends client two things
 {Ksession,server,time}Kc

 Client can decrypt this to learn session key
 Client knows when the ticket will expire

 Ticket={client,time,Ksession}Ks
 Client cannot decrypt ticket
 Client can transmit ticket to server as opaque data

15-410, F'1723

Not Really Kerberos

Results (client)Results (client)
 Client has session key for encryption

 Can trust that only desired server knows it

Results (server)Results (server)
 Server knows identity of client
 Server knows how long to trust that identity
 Server has session key for encryption

 Data which decrypt meaningfully must be from that client

15-410, F'1724

Not Really Kerberos

Results (architecture)Results (architecture)
 N users, M servers
 System has N+M keys

 Like a public-key crypto system
 But fast private-key ciphers are used

 Each entity remembers only one (small) key
 “Single-sign on”: one password per user

Availability issue?Availability issue?
 What could make the system stop authenticating?

15-410, F'1725

Securing a Kerberos Realm

KDC (Kerberos Distribution Center)KDC (Kerberos Distribution Center)
 Single point of failure

 If it's down, clients can't get tickets to contact more servers...

» Ok, fine, multiple instances of server (master/slave)

15-410, F'1726

Securing a Kerberos Realm

KDC (Kerberos Distribution Center)KDC (Kerberos Distribution Center)
 Single point of failure

 If it's down, clients can't get tickets to contact more servers...

» Ok, fine, multiple instances of server (master/slave)

 Each server knows all keys in system
 Each server is a point of compromise

» Deployed in locked boxes in (multiple) machine rooms

 Very delicate to construct & deploy
 Turn off most Internet services
 Maybe boot from read-only media
 Maybe booting requires entry of master password
 Unwise to back up key database to “shelf full of tapes”

15-410, F'1727

SSL

GoalsGoals
 Fast, secure communication
 Any client can contact any server on planet

ProblemsProblems
 There is no single trusted key server for the whole planet

 Can't use Kerberos approach

 Solution: public-key cryptography?

15-410, F'1728

SSL

GoalsGoals
 Fast, secure communication
 Any client can contact any server on planet

ProblemsProblems
 There is no single trusted key server for the whole planet

 Can't use Kerberos approach

 Solution: public-key cryptography?
 Interesting issue: public key algorithms are slow
 Huge problem: there is no global public-key directory

15-410, F'1729

SSL Approach (“Not exactly”)

ApproachApproach
 Use private-key/symmetric encryption for speed
 Swap symmetric session keys via public-key crypto

 Temporary random session keys similar to Kerberos

StepsSteps
 Client looks up server's public key in global directory
 Client generates random AES session key
 Client encrypts session key using server's RSA public key
 Now client & server both know session key
 Client knows it is talking to the desired server

 After all, nobody else can do the decrypt...

15-410, F'1730

SSL Approach (“Not exactly”)

ProblemProblem
 There is no global key directory
 Would be a single point of compromise

 False server keys enable server spoofing

 If you had a copy of one it would be out of date
 Some server would be deployed during your download

ApproachApproach
 Replace global directory with chain of trust
 Servers present their own keys directly to clients
 Keys are signed by “well-known” certifiers

15-410, F'1731

Not SSL

Server “certificate”Server “certificate”
 “To whom it may concern, whoever can decrypt messages

encrypted with public key AAFD01234DE34BEEF997C is
www.cmu.edu”

Protocol operationProtocol operation
 Client calls server, requests certificate
 Server sends certificate
 Client generates private-key session key

 Client sends {Ksession}Kserver to server

 If server can decrypt and use Ksession, it must be legit

Any problem...?Any problem...?

15-410, F'1732

SSL Certificates

How did we know to trust that certificate?How did we know to trust that certificate?

Certificates are signed by Certificates are signed by certificate authoritiescertificate authorities
 “Whoever can decrypt messages encrypted with public

key AAFD01234DE34BEEF997C is www.cmu.edu
 Signed, Baltimore CyberTrust

» SHA-256 hash of statement: 904ffa3bb39348aas

» Signature of hash: 433432af33551a343c143143fd11

Certificate verificationCertificate verification
 Compute SHA-256 hash of server's key statement
 Look up public key of Baltimore CyberTrust in global

directory...oops!

15-410, F'1733

SSL Certificates

How did we know to trust the server's certificate?How did we know to trust the server's certificate?
 Certificates are signed by certificate authorities
 Browser vendor ships CA public keys in browser

 Check your browser's security settings, see who you trust!

 “Chain of trust”
 Mozilla.org certifies Baltimore Cybertrust
 Baltimore Cybertrust certifies, ex., www.cmu.edu

15-410, F'1734

SSL Certificates

How did we know to trust the server's certificate?How did we know to trust the server's certificate?
 Certificates are signed by certificate authorities
 Browser vendor ships CA public keys in browser

 Check your browser's security settings, see who you trust!

 “Chain of trust”
 Mozilla.org certifies Baltimore Cybertrust
 Baltimore Cybertrust certifies, ex., www.cmu.edu
 Say, who actually certifies www.cmu.edu?

15-410, F'1735

SSL Certificates

How did we know to trust the server's certificate?How did we know to trust the server's certificate?
 Certificates are signed by certificate authorities
 Browser vendor ships CA public keys in browser

 Check your browser's security settings, see who you trust!

 “Chain of trust”
 Mozilla.org certifies Baltimore Cybertrust
 Baltimore Cybertrust certifies, ex., www.cmu.edu
 Say, who actually certifies www.cmu.edu?

» As of 2017-11-30: “COMODO CA Limited”

» You've heard of them, right? Household name?

15-410, F'1736

SSL Certificates

How did we know to trust the server's certificate?How did we know to trust the server's certificate?
 Certificates are signed by certificate authorities
 Browser vendor ships CA public keys in browser

 Check your browser's security settings, see who you trust!

 “Chain of trust”
 Mozilla.org certifies Baltimore Cybertrust
 Baltimore Cybertrust certifies, ex., www.cmu.edu
 Say, who actually certifies www.cmu.edu?

» As of 2017-11-30: “COMODO CA Limited”

» You've heard of them, right? Household name?

» How about “NetLock Halozatbiztonsagi Kft.”???

15-410, F'1737

SSL Certificates

How did we know to trust the server's certificate?How did we know to trust the server's certificate?
 Certificates are signed by certificate authorities
 Browser vendor ships CA public keys in browser

 Check your browser's security settings, see who you trust!

 “Chain of trust”
 Mozilla.org certifies Baltimore Cybertrust
 Baltimore Cybertrust certifies, ex., www.cmu.edu
 Say, who actually certifies www.cmu.edu?

» As of 2017-11-30: “COMODO CA Limited”

» You've heard of them, right? Household name?

» How about “NetLock Halozatbiztonsagi Kft.”???

 2010 update – CA's issue fake certs to police/spy
agencies

15-410, F'1738

SSL Certificates

How did we know to trust the server's certificate?How did we know to trust the server's certificate?
 Certificates are signed by certificate authorities
 Browser vendor ships CA public keys in browser

 Check your browser's security settings, see who you trust!

 “Chain of trust”
 Mozilla.org certifies Baltimore Cybertrust
 Baltimore Cybertrust certifies, ex., www.cmu.edu
 Say, who actually certifies www.cmu.edu?

» As of 2017-11-30: “COMODO CA Limited”

» You've heard of them, right? Household name?

» How about “NetLock Halozatbiztonsagi Kft.”???

 2010 update – CA's issue fake certs to police/spy
agencies

 2011 update – CA's cracked: “InstantSSL.it”, “Diginotar”
 2012 update – UTA/Stanford AllYourSSLAreBelongTo.us

15-410, F'1739

PGP

GoalGoal
 “Pretty Good Privacy” for the masses
 Without depending on a central authority

ApproachApproach
 Users generate public-key key pairs
 Public keys stored “on the web” (pgpkeys.mit.edu)

 Global directory (untrusted, like a whiteboard)

 We have covered how to send/receive/sign secret e-mail

ProblemProblem
 How do I trust a public key I get from “on the web”?

15-410, F'1740

“On the Web”

PGP key server protocolPGP key server protocol
 ???: Here is de0u@andrew.cmu.edu's latest public key!

 Server: “Great, I'll provide it when anybody asks!”

 Alice: What is de0u@andrew.cmu.edu's public key?
 Server: Here are 8 possibilities...you decide which to trust!

How do I How do I trusttrust a public key I get “from the web”? a public key I get “from the web”?
 “Certificate Authority” approach has issues

 They typically charge $50-$1000 per certificate per year
 They are businesses...governments can lean on them

» ...to present false keys...

» ...to delete your key from their directory...

» ...to refuse to sign your key...

15-410, F'1741

PGP

““WebWeb of trust” of trust”
 Dave E. and Dave O'Hallaron swap public keys (“key-

signing party”)
 Dave O. signs Dave E.'s public key

 “937022D7 is the fingerprint of de0u@andrew.cmu.edu's
key” -- sincerely, 77432900

 Publishes signature on one or more web servers

 Dave O. and Andrew Moore swap public keys (at lunch)

Using the web of trustUsing the web of trust
 Andrew fetches Dave E's public key from the web

 Verifies Dave O's signature on it

 Andrew can safely send secret mail to Dave E.
 Andrew can verify digital signatures from Dave E.

15-410, F'1742

PGP “key rings”

Private key ringPrivate key ring
 All of your private keys
 Each encrypted with a “pass phrase”

 Should be longer & more random than a password
 If your private keys leak out, you can't easily change them

Public key ringPublic key ring
 Public keys of various people

 Each has one or more signatures
 Some are signed by you – your PGP will use without

complaint

15-410, F'1743

PGP Messages

Message goalsMessage goals
 Decryptable by multiple people (recipients of an e-mail)
 Large message bodies decryptable quickly
 Message size not proportional to number of receivers

Message structureMessage structure
 One message body, encrypted with a symmetric cipher

 Using a random “session” key

 N key packets
 Session key public-key encrypted with one recipient's key

15-410, F'1744

Not PGP

SA(H(M))

EK(M, SA(H(M)))

Alice

EB(K), EK(M, SA(H(M)))

K

VA(SA(H(M)))

M

Bob

DB(EB(K)) DK(EK(M, SA(H(M))))

K SA(H(M))

H(M)

Note: on this slide, EK(a, b) means ...“a and b”...with K
(Notation closer to textbook's than to mine)

15-410, F'1745

Biometrics

ConceptConcept
 Tie authorization to who you are

 Not what you know – can be copied

 Hard to impersonate a retina
 Or a fingerprint

15-410, F'1746

Biometrics

ConceptConcept
 Tie authorization to who you are

 Not what you know – can be copied

 Hard to impersonate a retina
 Or a fingerprint

Right?Right?

15-410, F'1747

Biometrics

ConceptConcept
 Tie authorization to who you are

 Not what you know – can be copied

 Hard to impersonate a retina
 Or a fingerprint

Right?Right?
 What about gummy bears?

15-410, F'1748

Biometrics

ConceptConcept
 Tie authorization to who you are

 Not what you know – can be copied

 Hard to impersonate a retina
 Or a fingerprint

Right?Right?
 What about gummy bears?
 What about carjackers?

15-410, F'1749

Summary

Many threatsMany threats

Many techniquesMany techniques

““The devil is in the details”The devil is in the details”

Just because it “works” doesn't mean it's right!Just because it “works” doesn't mean it's right!

Open algorithms, open sourceOpen algorithms, open source

15-410, F'1750

Further Reading

PGP PathfinderPGP Pathfinder
 http://pgp.cs.uu.nl/paths/A6E45ECC/to/1E42B367.html

Kerberos: An Authentication Service for ComputerKerberos: An Authentication Service for Computer
NetworksNetworks

 B. Clifford Neuman, Theodore Ts'o
 USC/ISI Technical Report ISI/RS-94-399

15-410, F'1751

Further Reading

““Certified Lies: Detecting and Defeating GovernmentCertified Lies: Detecting and Defeating Government
Interception Attacks Against SSL”Interception Attacks Against SSL”

 http://files.cloudprivacy.net/ssl-mitm.pdf

““Creating a rogue CA certificate”Creating a rogue CA certificate”
 http://www.phreedom.org/research/rogue-ca/

““A Post Mortem on the Iranian DigiNotar Attack”A Post Mortem on the Iranian DigiNotar Attack”
 https://www.eff.org/deeplinks/2011/09/post-mortem-iranian-diginotar-attack

““Certificate stolen from Malaysian gov used to signCertificate stolen from Malaysian gov used to sign
malware”malware”

 http://www.theregister.co.uk/2011/11/14/stolen_certificate_discovered/

““The most dangerous code in the world: ValidatingThe most dangerous code in the world: Validating
SSL certificates in non-browser software”SSL certificates in non-browser software”

 http://www.cs.utexas.edu/%7Eshmat/shmat_ccs12.pdf

15-410, F'1752

Further Reading

Impact of Artificial “Gummy” Fingers on FingerprintImpact of Artificial “Gummy” Fingers on Fingerprint
SystemsSystems

 Matsumoto et al.
 http://cryptome.org/gummy.htm

Amputation hazards of biometricsAmputation hazards of biometrics
 http://www.theregister.co.uk/2005/04/04/fingerprint_merc_chop/

