15-410
“..1969 > 199972...”

Protection
Nov. 27, 2017

Dave Eckhardt
Dave O'Hallaron

L33 Protection

15-410, F'17



Synchronization

Upcoming lectures
= Security, security
= Parallelism, parallelism

= Transactions
= Device drivers
= Exam review

Attendance is probably in your best interest



Outline

Protection (OSC: Chapter 14)

= Protection vs. Security
= Domains (Unix, Multics)

= Access Matrix
= Concept, Implementation

= Revocation — not really covered today (see text)

Mentioning EROS
[Later lectures: techniques and cracks]

15-410, F'17



Protection vs. Security

Textbook's distinction

= Protection happens inside a computer
= Which parts may access which other parts (how)?

= Security considers external threats
= |s the system's model intact or compromised?

15-410, F'17



Protection

Goals
= Prevent intentional attacks
= “Prove” access policies are always obeyed

= Detect bugs
= “Wild pointer” example

Policy specifications
= System administrators
= Users - May want to add new privileges to system

15-410, F'17



Objects

Hardware
= Exclusive-use: printer, serial port, CD writer, ...
= Fluid aggregates: CPU, memory, disks, screen

Logical objects
= Files
= Processes
= TCP port 25
= Database tables

15-410, F'17



Operations

Depend on object!
= Disk: read_sector(), write_sector()
= CD-ROM: read_sector(...)
= TCP port: advertise(...)

= CPU
= Conceptually: context_switch(...), <interrupt>
= More sensibly: realtime_schedule(..., ...)

15-410, F'17



Access Control

Basic access control
= Your processes should access only “your stuff”
= Implemented by many systems

15-410, F'17



Access Control

Basic access control
= Your processes should access only “your stuff”
= Implemented by many systems

Principle of least privilege
= (text: “need-to-know”)

= ¢c¢c -¢ foo.c
= should read foo.c, stdio.h, ...
= should write foo.0

15-410, F'17



10

Access Control

Basic access control
= Your processes should access only “your stuff”
= Implemented by many systems

Principle of least privilege
= (text: “need-to-know”)

= c¢c -c¢ foo.c
= should read foo.c, stdio.h, ...
= should write foo.o
« should not write ~/.cshrc

= This is harder

15-410, F117



11

Who Can Do What?

access right = (object, operations)
= /etc/passwd, r
= /etc/passwd, r/w

process = protection domain
= PO - deOu, P1 - mowry, ...

protection domain = list of access rights
= deOu - (/etc/passwd, r), (/afs/andrew/usr/deQu/.cshrc, w)

15-410, F'17



12

Protection Domain Example

Domain 1
= /dev/null, read/write
= /usr/deOu/.cshrc, read/write
= /usr/mowry/.cshrc, read

Domain 2
= /dev/null, read/write
= /usr/mowry/.cshrc, read/write
= /usr/deOu/.cshrc, read

15-410, F'17



13

Using Protection Domains

Least privilege requires domain changes
= Doing different jobs requires different privileges

= One printer daemon, N users
= “Print each user's file with minimum necessary privileges...”

15-410, F'17



Using Protection Domains

Least privilege requires domain changes
= Doing different jobs requires different privileges

= One printer daemon, N users
= “Print each user's file with minimum necessary privileges...”

Two general approaches

= Hold constant the “process < domain” mapping
= Requires domains to add and drop privileges
= User “printer” gets & releases permission to read your file

= Hold constant the privileges of a domain

= Processes domain-switch between high-privilege, low-
privilege domains
= Printer process opens file as you, opens printer as “printer”

14 15-410, F17



15

Protection Domain Models

Three sample models
= Domain = user
= Domain = process
= Domain = procedure
= (other models are possible)

15-410, F'17



16

Domain = User

Object permissions depend on who you are
All processes you are running share privileges

Privilege adjustment?
= Log off, log on (i.e., domain switch)

15-410, F'17



17

Domain = Process

Resources managed by special processes
= Printer daemon, file server process, ...

Privilege adjustment?
= Objects cross domain boundaries via IPC

= “Please send these bytes to the printer”
/* concept only; pieces missing */
s = socket (AF_UNIX, SOCK_STREAM, O0);
connect (s, pserver, sizeof pserver);
mh->cmsg_type = SCM_RIGHTS;
mh->cmsg len[0] = open(“/my/file”, 0, 0);
sendmsg (s, &mh, 0);

15-410, F'17



18

Domain = Procedure

Processor limits access at fine grain
= Hardware protection on a per-variable basis!

Domain switch - Inter-domain procedure call
= nr = print(strlen(buf), buf);

= What is the “correct domain” for print()?
= Access to OS's data structures
= Permission to call OS's internal putbytes ()
= Permission to read user's buf

15-410, F'17



Domain = Procedure

Processor limits access at fine grain
= Hardware protection on a per-variable basis!

Domain switch - Inter-domain procedure call
= nr = print(strlen(buf), buf);

= What is the “correct domain” for print()?
= Access to OS's data structures
= Permission to call OS's internal putbytes ()
= Permission to read user's buf

= |deally, correct domain automatically created by hardware
= Common case: “user mode” vs. “kernel mode”
» Only a rough approximation of the right domain
» But simple for hardware to implement

15-410, F'17



20

Unix “setuid” concept

Assume Unix protection domain = numeric user id

= Not the whole story! This overlooks:
= Group id, group vector
= Process group, controlling terminal
= Superuser

= But let's pretend for today

Domain switch via setuid executable
= Special permission bit set with chmod u+s file
= Meaning: exec() sets uid to executable file's owner

= Gatekeeper programs
= “lpr” run by anybody can access printer's queue files

15-410, F'17



21

Access Matrix Concept

Concept
= Formalization of “who can do what”

Basic idea

= Store all permissions in a matrix
= One dimension is protection domains
= Other dimension is objects
= Entries are access rights

15-410, F'17



22

Access Matrix Concept

15-410, F'17



23

Access Matrix Details

OS must still define process - domain mapping

OS must define, enforce domain-switching rules

= Ad-hoc approach
= Special domain-switch rules (e.g., log off/on)

= Can encode domain-switch in access matrix!
= Switching domains is a privilege like any other...
= Add domain co/lumns (domains are objects)
= Add switch-to rights to domain objects
» “D2 processes can switch to D1 at will”
= Subtle (dangerous)

15-410, F'17



24

Adding “Switch-Domain” Rights

D1

15-410, F'17



25

Updating the Matrix

Ad-hoc approach

= “System administrator” can update matrix

Matrix approach

= Add copy rights to objects
= “Domain D1 may copy read rights for File2”
= So D1 can give D2 the right to read File2

15-410, F'17



26

Adding Copy Rights

15-410, F'17



27

Adding Copy Rights

rwxdR
r

15-410, F'17



28

Updating the Matrix

Add owner rights to objects
= D1 has owner rights for 047

= D1 can modify the 047 column at will
= Can add, delete rights to 047 from all other domains

Add control rights to domain objects
= D1 has control rights for D2

= D1 can modify D2's rights to any object
= D1 may be teacher, parent, ...

15-410, F'17



29

Access Matrix Implementation

Implement matrix via matrix?
= Huge, messy, slow

Very clumsy for...

= “world readable file”
= Need one entry per domain
= Must fill rights in when creating new domain
= “private file”
= Lots of blank squares
» Can Alice read the file? - No
» Can Bob read the file? - No

)) [

Two typical approaches — “ACL”, “capabilities”

15-410, F'17



30

Access Control List

15-410, F'17



31

Access Control List (ACL)

List per matrix column (object)
= deOu, read; mowry, read+write

Naively, domain = user
AFS ACLs

= domain = user, user:group, system:anyuser, machine list
(system:campushost)

= positive rights, negative rights
= deOu:staff rlid
= mdehesaa -rlid

Cool!

15-410, F'17



Access Control List (ACL)

List per matrix column (object)
= deOu, read; mowry, read+write

Naively, domain = user
AFS ACLs

= domain = user, user:group, system:anyuser, machine list
(system:campushost)

= positive rights, negative rights
= deOu:staff rlid
= mdehesaa -rlid

Doesn't really do least privilege
= Adding and deleting users is a heavy-weight operation
= System stores many privileges per user, permanently...



33

Capability List

15-410, F'17



34

Capability Lists

Capability Lists
= List per matrix row (domain)

= Naively, domain = user
= More typically, domain = process

Permit least privilege

= Domains can transfer & forget capabilities
= Possible to create “just right” domains
» c¢c which can't write to .cshrc
= Bootstrapping problem
= Who gets which rights at boot?
= Who gets which rights at login?
= Typical solution: store capability lists in files somehow

15-410, F'17



35

Mixed Approach

Permanently store ACL for each file
= Must fetch ACL from disk to access file
= ACL fetch & evaluation may be long, complicated

open() checks ACL, creates capability
= “Process 33 has read-only access to vhode #5894”
= Records access rights for this process
= Quick verification on each read(), write()

= Result: per-process fd table “caches” results of ACL
checks

15-410, F'17



36

Internal Protection?

Understood so far:

= Which user process should be allowed to access what?
= Job performed by OS

= How to protect OS code, data from user processes
= Hardware user/kernel boundary

Can we do better?
= Can we protect parts of the OS from other parts?

15-410, F'17



37

Traditional OS Layers

15-410, F'17



38

Traditional OS Layers

Smaller
Simpler
More Critical

15-410, F'17



39

Traditional OS Layers

Equally
Trusted!!

15-410, F'17



40

Traditional OS Layers

Wild Pointer
Access

15-410, F'17



41

Multics

Multics =
= Multiplexed Information and Computing Service

= Plan: “information utility”
= Mainframe per city

Designed to scale
= Many users, many programmers
= Protection seen as a key ingredient of reliability

15-410, F'17



42

Multics Approach

Trust hierarchy

Small “simple” very-trusted kernel
= Main job: access control
= Goal: “prove” it correct

Privilege layers (nested “rings”)

Ring 0 = kernel, “inside” every other ring
Ring 1 = operating system core

Ring 2 = operating system services

Ring 7 = user programs

15-410, F'17



43

Multics Ring Architecture

Segmented virtual address space

= “Print module” may contain
= Entry points in a code segment

» list printers(), list queue(), enqueue(), ...

= Data segment
» List of printers, accounting data, queues

= Segment = file (segments persist across reboots)
= VM permissions focus on segments, not pages

Access checked by hardware
= Which procedures can you call?
= Is access to that segment's data legal?

15-410, F'17



et

Multics Rings

15-410, F'17



45

Multics Rings

Wild Pointer
Access

15-410, F'17



46

Multics Rings

Fault

Wild Pointer
Access

15-410, F'17



47

Multics Domain Switching

CPU has current ring number register
= Current privilege level, [0..7]

Segment descriptors include

= “Traditional stuff”
= Segment's limit (size)
= Segment's base in physical memory
= Access bits (read, write, execute)

Ring number

Access bracket [min, max]

= Segment “appears in” ring min...ring max
Entry limit - “you must be this tall to access this segment”
List of gates (procedure entry points)

15-410, F'17



48

Multics Domain Switching

Every procedure call is a potential domain switch

Calling a procedure at current privilege level?
= Just call it

Calling a more-privileged procedure?
= Call mechanism checks entry point is legal
= We enter more-privileged mode
= Called procedure can read & write all of our data

Calling a less-privileged procedure?
= We want to show it some of our data (procedure params)
= We don't want it to modify our data

15-410, F'17



49

Multics Domain Switching

min <= current-ring <= max
= We are executing in ring 3
= Procedure is “part of” rings 2..4
= Standard procedure call

15-410, F'17



50

Multics Domain Switching

current-ring > max

Calling a more-privileged procedure \
It can do whatever it wants to us

Implementation

Hardware traps to ring 0 permission-management kernel

Ring 0 checks current-ring < entry-limit
= User code may be forbidden to call ring 1 directly

Ring 0 checks call address is a legal entry point
= Less-privileged code can't jJump into middle of a procedure

Ring 0 sets current-ring to segment-ring
= Privilege elevation — after consulting callee's rules

Runs procedure call

15-410, F'17



51

Multics Domain Switching

current-ring < min
= Calling a less-privileged procedure

Implementation
= Trap to ring 0 permission-management kernel

= Ring 0 copies “privileged” procedure call parameters
= Must be in low-privilege segment for callee to access

= Ring 0 sets current-ring to segment-ring
= Privilege lowering — callee gets r/o access to carefully
chosen privileged state

= Runs procedure call

/V

15-410, F'17



52

Multics Ring Architecture

Does this look familiar?
= It should really remind you of something...

Benefits
= Core security policy small, centralized
= Damage limited vs. Unix “superuser” model

Concerns
= Hierarchy # least privilege
= Requires specific hardware
= Performance (maybe)

15-410, F'17



53

More About Multics

Back to the future

Symmetric multiprocessing

Hierarchical file system (access control lists)
Memory-mapped files

Hot-pluggable CPUs, memory, disks

1969!!!

Significant influence on Unix
= Ken Thompson was a Multics contributor

The One True OS
= |In use 1968-2000
= www.multicians.org

15-410, F'17



54

Mentioning EROS

Text mentions Hydra, CAP
= Late 70's, early 80's
= Dead

EROS (“Extremely Reliable Operating System”)
= UPenn, Johns Hopkins
= Based on commercial GNOSIS/KeyKOS OS
= WWW.eros-0s.0org
= “Arguably less dead” (see below)

15-410, F'17



55

EROS Overview

“Pure capability” system
= “ACLs considered harmful”

“Pure principle system”
= Don't compromise principle for performance

Aggressive performance goal
= Domain switch ~100X procedure call

Unusual approach to capability-bootstrap problem
= Persistent processes!

15-410, F'17



Persistent Processes??

No such thing as reboot
Processes last “forever” (until exit)

OS kernel checkpoints system state to disk
= Memory & registers defined as cache of disk state

Restart restores system state into hardware
“Login” reconnects you to your processes

56 15-410, F'17



57

EROS Objects

Disk pages

= capabilities: read/write, read-only

Capability nodes

= Arrays of capabilities

Numbers

= Protected capability ranges
= “Disk pages 0...16384”

Process — executable node

15-410, F'17



EROS Revocation Stance

Really revoking access is hard
= The user could have copied the file

Don't give out real capabilities
= Give out proxy capabilities
= Then revoke however you wish

Verdict

= Not really satisfying

= Unclear there is a better answer
= Palladium/“trusted computing” isn't clearly better

58

15-410, F'17



59

EROS Quick Start

http://www.eros-o0s.org/

= essays/
= reliability/paper.html
= capintro.html
= wherefrom.html
= ACLSvCaps.html

Current status
= EROS code base transitioned to CapROS.org

= Follow-on research project at Coyotos.org

15-410, F'17



60

Concept Summary

Object

= Operations

Domain
= Switching

Capabilities
= Revoking is hard, see text

“Protection” vs. “security”
= Protection is what our sysadmin hopes is happening...

Further reading?
= PLASH - “principle of least authority” shell for Linux

15-410, F'17



