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What is Virtualization?

● Virtualization:

 Practice of presenting and partitioning computing
resources in a logical way rather than partitioning
according to physical reality

● Virtual Machine:

 An execution environment (logically) identical to a
physical machine, with the ability to execute a full
operating system
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Process vs. Virtualization

● The Process abstraction is a “weak, fuzzy” form of
virtualization

 Many process resources exactly match machine
resources

● %eax, %ebx, …

 Some machine resources are not visible to processes
● %cr0

 Some process resources are “inspired by” hardware
● SIGALARM

 Some process resources are “invented” - don't match any
hardware feature

● “current directory” and “umask”

● Virtualization is “more like hardware” than processes
 What runs inside virtualization is an operating system

Process : Kernel :: Kernel : ?
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Process vs. Virtualization

● The Process abstraction is a “weak, fuzzy” form of
virtualization

 Many process resources exactly match machine
resources

● %eax, %ebx, …

 Some machine resources are not visible to processes
● %cr0

 Some process resources are “inspired by” hardware
● SIGALARM

 Some process resources are “invented” - don't match any
hardware feature

● “current directory” and “umask”

● Virtualization is “more like hardware” than processes
 What runs inside virtualization is an operating system

Process : Kernel :: Kernel : Virtual-machine monitor
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Process

Kernel

Process Process

Physical Machine

Process/Kernel Stack
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Why Use Virtualization?

● Run two operating systems on the same machine!

 “Windows+Linux” was VMware's first business model
 Hobbyists like to run ancient-history OS's

● Debugging OS's is more pleasant
 Also: instrumenting what an OS does
 Monitoring a captive OS for security infestations 

● “Process abstraction” at the kernel layer
 Separate file system

 Multiple machine owners

 Better protection than one kernel's processes (in theory)
● “Small, secure” hypervisor, “small, fair” scheduler
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Why Use Virtualization?

● Huge impact on enterprise hosting

 No longer need to sell whole machines

 Sell machine slices
● “xx GB RAM, yy cores” - smoother than “n Dell PowerEdge

2600's”
● Can put competitors on the same physical hardware

● Can separate instance of VM from instance of hardware
 Live migration of VM from machine to machine

● Deal with machine failures or machine-room flooding

 VM replication to provide fault tolerance
● “Why bother doing it at the application level?”

● Can overcommit hardware
 Most VM's are not 100% busy all the time
 If one suddenly becomes 100% busy, move it to a

dedicated machine for a few hours, then move it back
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Virtualization in Enterprise

● Separates product (OS services) from physical
resources (server hardware)

● Live migration example:

VM 2
Server 1

VM 1
P P P P P P

VM 4
Server 3

P P P

VM 3
Server 2

P P P
VM 1

P P P

VM 2
P P P
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Full-System Simulation
(Simics 1998)

● Software simulates hardware components that make up
a target machine

 Interpreter executes each instruction & updates the
software representation of the hardware state

● Approach is very accurate but very slow

● Great for OS development & debugging

 “Break on triple fault” is better than real hardware
suddenly rebooting

 Possible to debug a driver for a hardware device that
hasn't been built yet
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System Emulation 
(Bochs, DOSBox, QEMU, fake86)

● Emulate just enough of hardware components to create
an accurate “user experience”

● Typically CPU & memory are emulated
 Buses are not
 Devices communicate with CPU & memory directly

● Shortcuts are taken to achieve better performance
 Reduces overall system accuracy
 Code designed to run correctly on real hardware executes

“pretty well”
 Code not designed to run correctly on real hardware

exhibits wildly divergent behavior
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System Emulation Techniques

● Pure interpretation:
 Interpret each guest instruction 

 Perform a semantically equivalent operation on host

● Static translation:

 Translate each guest instruction to host instructions once

 Example: DEC “mx” translator

● Input: MIPS Ultrix executable
● Output: Alpha OSF/1 executable

 Limited applicability; self-modifying code doesn't work
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System Emulation Techniques

● Dynamic translation:

 Translate a block of guest instructions to host
instructions just prior to execution of that block

 Cache translated blocks for better performance

 Like a Smalltalk/Java “JIT”

● Dynamic recompilation & adaptive optimization:

 Discover which algorithm the guest code implements

 Substitute with an optimized version on the host

 Hard
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Kinds of Instructions

● “Regular”
 ADD, XOR
 Load, store
 Branch, push, pop

● “Special”
 CLI/STI, HLT, read/modify %cr3

● Devices (magic side-effects)
 INB/OUTB
 Stores into video RAM!

● How do we emulate?
 “Regular”, “Special” - just simulate the CPU
 Devices – very difficult!

● Thousands of devices exist, each one is extremely complex
● A device emulator may be 100 lines of code, or 10,000
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The Need for Speed

● “Slow” is easy
 Simulation is naturally slow
 Binary translation requires lots of “compilation”

● Key observation
 “Run virtual X on physical X” should be faster than “run

virtual X on physical Y”
 “x86 on x86” should be faster than “x86 on PowerPC”
 We don't need to simulate hardware if we can use it

● “The best simulation of REP STOSB is REP STOSB”

● while(1):
 Find a big block of “regular” instructions
 Load up register values, jump to start of block

● These instructions run at full speed

 When something goes wrong, figure out a fix
● This part is slow
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Full Virtualization

● IBM CP-40 (1967)

 Supported 14 simultaneous S/360 virtual machines

● Later evolved into CP/CMS and VM/CMS (still in use)
 1,000 mainframe users, each with a private mainframe,

running a text-based single-process “OS”
● Popek & Goldberg: Formal Requirements for

Virtualizable Third Generation Architectures (1974)

 Defines characteristics of a Virtual Machine Monitor
(VMM)

 Describes a set of architecture features sufficient to
support virtualization
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Virtual Machine Monitor

● Equivalence:

 Provides an environment essentially identical with the
original machine

● Efficiency:

 Programs running under a VMM should exhibit only minor
decreases in speed

● Resource Control:

 VMM is in complete control of system resources

Process : Kernel :: VM : VMM
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Popek & Goldberg Instruction
Classification

● Sensitive instructions:

 Attempt to change configuration of system resources

● Disable interrupts
● Change count-down timer value
● ...

 Illustrate different behaviors depending on system
configuration

● Privileged instructions:

 Trap if the processor is in user mode

 Do not trap in supervisor mode
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Popek & Goldberg Theorem

“... a virtual machine monitor may be constructed if the
set of sensitive instructions for that computer is a
subset of the set of privileged instructions.”

● Each instruction must either:

 Exhibit the same result in user and supervisor modes

 Else trap if executed in user mode

● Then a VMM can run a guest kernel in user mode! 
 Sensitive instructions are trapped, handled by VMM

● Architectures that meet this requirement:

 IBM S/370, Motorola 68010+, PowerPC, others.
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x86 Virtualization

● x86 ISA (pre-2005) does not meet the Popek & Goldberg
requirements for virtualization!

● ISA contains 17+ sensitive, unprivileged instructions:

 SGDT, SIDT, SLDT, SMSW, PUSHF, POPF, LAR, LSL,
VERR, VERW, POP, PUSH, CALL, JMP, INT, RET,
STR, MOV

 Most simply reveal that the “kernel” is running in user
mode

● PUSHF
● PUSH %CS

 Some execute inaccurately  
● POPF

● Virtualization is still possible, requires workarounds
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The “POPF Problem”

PUSHF  # %EFLAGS onto stack

ANDL $0x003FFDFF, (%ESP) # Clear IF on stack

POPF  # %EFLAGS from stack

● If run in supervisor mode, interrupts are now off

● What “should” happen if this is run in user mode?
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The “POPF Problem”

PUSHF  # %EFLAGS onto stack

ANDL $0x003FFDFF, (%ESP) # Clear IF on stack

POPF  # %EFLAGS from stack

● If run in supervisor mode, interrupts are now off

● What “should” happen if this is run in user mode?

 Attempting a privileged operation should trap to VMM
 If it doesn't trap, the VMM can't simulate it

● Because the VMM won't even know it happened

● What happens on the x86?
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The “POPF Problem”

PUSHF  # %EFLAGS onto stack

ANDL $0x003FFDFF, (%ESP) # Clear IF on stack

POPF  # %EFLAGS from stack

● If run in supervisor mode, interrupts are now off

● What “should” happen if this is run in user mode?

 Attempting a privileged operation should trap to VMM
 If it doesn't trap, the VMM can't simulate it

● Because the VMM won't even know it happened

● What happens on the x86?
 CPU “helpfully” ignores changes to privileged bits when

POPF runs in user mode!
 So that sequence does nothing, no trap, VMM can't simulate
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VMware (1998)

● Runs guest operating system in ring 3

 Maintains the illusion of running the guest in ring 0

● Insensitive instruction sequences run by CPU at full
speed:

 movl 8(%ebp), %ecx

 addl %ecx, %eax

● Privileged instructions trap to the VMM:

 cli

● Sensitive, unprivileged instructions handled by binary
translation:

 popf ⇒ int $99
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Virtual Memory

● We've virtualized instruction execution
 How about other resources?

● Kernels use physical memory to implement virtual
memory
 How do we virtualize physical memory?

● Each guest kernel must be protected from the others, so we
can't let them access physical memory

● Ok, use virtual memory (obvious so far, isn’t it?)
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Virtual Memory

● We've virtualized instruction execution
 How about other resources?

● Kernels use physical memory to implement virtual
memory
 How do we virtualize physical memory?

● Each guest kernel must be protected from the others, so we
can't let them access physical memory

● Ok, use virtual memory (obvious so far, isn’t it?)

 But guest kernels themselves provide virtual memory to
their processes

● They like to “MOVL %EAX, %CR3”
● We can't allow them to do that!
● Can we simulate it??



39

VM – Guest-kernel view

Page

Frame

Guest believes
its RAM has
frames 0..N



40

VM – Fiction vs. Reality

Virtual Page

Virtual Frame

Guest view

Physical Frame

Guest believes
this is a frame
number, but it's
just a number

Actual frame
number – guest
kernel must not
be allowed to
specify!
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VM – How to do it?

Virtual Page

Virtual Frame

Guest view

Physical Frame

Guest believes
this is a frame
number, but it's
just a number

Actual frame
number – guest
kernel must not
be allowed to
specify!

Note: traditional x86 VM hardware does not implement “map, then map again”
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VM – How to do it?

Virtual Page

Virtual Frame

Guest view

Physical Frame

Guest believes
this is a frame
number, but it's
just a number

Actual frame
number – guest
kernel must not
be allowed to
specify!

This is what
must go
into the
actual page
table
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VM – Shadow Page Tables

Guest view

Virtual Page

Virtual Page

Virtual Page

Virtual Frame

Virtual Frame

Virtual Frame

v %cr3

Reality

Frame

Frame

Frame

Page

Page

Page

%cr3

“Page-table compiler” -
Runs on “MOVL %EAX, %CR3”
Also runs on INVLPG
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Shadow Page Tables

● Accesses to %cr3 are trapped by hardware
 Store into %cr3?

● “Compile” guest-kernel page table into real page table
 Map guest frame numbers into actual frame numbers

● Secretly set  %cr3 to point to real page table

 Fetch from %cr3?
● Return the guest-kernel “physical” address of the virtual

page table in guest-kernel virtual memory, not the physical
address of the actual page table in physical memory
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Shadow Page Tables

● Accesses to %cr3 are trapped by hardware
 Store into %cr3?

● “Compile” guest-kernel page table into real page table
 Map guest frame numbers into actual frame numbers

● Secretly set  %cr3 to point to real page table

 Fetch from %cr3?
● Return the guest-kernel “physical” address of the virtual

page table in guest-kernel virtual memory, not the physical
address of the actual page table in physical memory

● Accesses to guest-kernel page tables are special too!
 It's ok for the guest kernel to examine its fake page table
 But if guest stores into a fake PTE, we must re-compile
 So virtual page tables are read-only pages for the guest
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Shadow Page Tables

● Accesses to %cr3 are trapped by hardware
 Store into %cr3?

● “Compile” guest-kernel page table into real page table
 Map guest frame numbers into actual frame numbers

● Secretly set  %cr3 to point to real page table

 Fetch from %cr3?
● Return the guest-kernel “physical” address of the virtual

page table in guest-kernel virtual memory, not the physical
address of the actual page table in physical memory

● Accesses to guest-kernel page tables are special too!
 It's ok for the guest kernel to examine its fake page table
 But if guest stores into a fake PTE, we must re-compile
 So virtual page tables are read-only pages for the guest

● Guest kernel sets some pages to “kernel only”
 Each guest page table compiles to two real page tables

● guest-kernel-mode has all pages, guest-user-mode doesn't
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Wow, This is Hard!

● Many tricks played to improve performance
 Compiling page-tables is slow, so cache old compilations
 When to garbage-collect them?

● PTE's contain dirty & accessed bits
 Won't cover that today

● Is there an easier way??
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Wow, This is Hard!

● Many tricks played to improve performance
 Compiling page-tables is slow, so cache old compilations
 When to garbage-collect them?

● PTE's contain dirty & accessed bits
 Won't cover that today

● Is there an easier way??
1. Fix the hardware

2. Blur the hardware (“paravirtualization”)
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Hardware Assisted Virtualization

● Modern x86's do meet Popek & Goldberg requirements

 Intel VT-x (2005), AMD-V (2006)

● VT-x introduces two new operating modes:

 “VMX root” operation & “VMX non-root” operation

 VMM runs in VMX root, guest OS runs in non-root

● Both modes support all privilege rings

 Guest OS runs in (non-root) ring 0

● VMM tells hardware “Enter guest mode, but trap on these
conditions: ...”

● If guest kernel runs a sensitive instruction, hardware does a
“VM exit” back to VMM, indicates why

● 2nd-generation VT-x has “EPT”: hardware fix for VM
 Host sets up page tables giving “virtual physical pages”

to guest
 Guest page tables map “virtual virtual pages” to them
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Paravirtualization 
(Denali 2002, Xen 2003)

● Motivation
 Binary translation and shadow page tables are hard

● First observation:
 If OS is open-source, it can be modified at the source

level to make virtualization explicit (not transparent), and
easier

● Replace “MOVL %EAX, %CR3” with “install_page_table()”
● Typically only a small fraction of the guest kernel needs to

be edited
● Guest user code is not changed at all

● Paravirtualizing VMMs (hypervisors) virtualize only a
subset of the x86 execution environment
 Run guest kernels in rings 1-3

● No illusion about running in a virtual environment
● Guest kernels may not use sensitive, unprivileged

instructions and expect a privileged result
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Paravirtualization
(Denali 2002, Xen 2003)

● Second observation:

 Regular VMMs must emulate hardware for devices

● Disk, Ethernet, etc

● Performance is poor due to constrained device API
 To “send packet”, must emulate many device-register

accesses (inb/outb or MMIO, interrupt enable/disable)
 Each step results in a trap

 Already modifying guest kernel, why not provide virtual
device drivers?

● Virtual Ethernet could export send_packet(addr, len)
 This requires only one trap

● “Hypercall” interface:
syscall : kernel :: hypercall : hypervisor
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Are We Having Fun Yet?

● Virtualization is great if you need it

 If you must have 35 /etc/passwd's, 35 sets of users, 35
Ethernet cards, etc.

 There are many techniques, which work (are secure and
fast enough)

● Virtualization is overkill if we need only isolation
 Remember the Java “virtual machine”??

● Secure isolation for multiple applications
● Old approach – Smalltalk (1980)
● New approach – Google App Engine, Heroku, etc.

● Open question
 How best to get isolation, machine independence?
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Summary

● What virtualization does

 Multiple OS's on one laptop
 Debugging, security analysis
 Enterprise

● Efficiency
● Reliability (outage resistance)

● The problem

 Kinds of instructions
● Solutions

 Binary translation (useful for light-weight uses)
 {Full, hardware assisted, para-}virtualization

● Many things not covered today!
 “I/O virtualization” - attaching real devices to virtual

machines
 ...
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