
1

Virtualization

Dave Eckhardt
Dave O'Hallaron

based on material from:
Mike Kasick

Roger Dannenberg
Glenn Willen

Mike Cui

Nov. 20, 2017

2

Outline

● Introduction
 What, why?

● Basic techniques
 Simulation
 Binary translation

● Kinds of instructions
● Virtualization

 x86 Virtualization
 Paravirtualization

● Summary

3

What is Virtualization?

● Virtualization:

 Practice of presenting and partitioning computing
resources in a logical way rather than partitioning
according to physical reality

● Virtual Machine:

 An execution environment (logically) identical to a
physical machine, with the ability to execute a full
operating system

6

Process vs. Virtualization

● The Process abstraction is a “weak, fuzzy” form of
virtualization

 Many process resources exactly match machine
resources

● %eax, %ebx, …

 Some machine resources are not visible to processes
● %cr0

 Some process resources are “inspired by” hardware
● SIGALARM

 Some process resources are “invented” - don't match any
hardware feature

● “current directory” and “umask”

● Virtualization is “more like hardware” than processes
 What runs inside virtualization is an operating system

Process : Kernel :: Kernel : ?

7

Process vs. Virtualization

● The Process abstraction is a “weak, fuzzy” form of
virtualization

 Many process resources exactly match machine
resources

● %eax, %ebx, …

 Some machine resources are not visible to processes
● %cr0

 Some process resources are “inspired by” hardware
● SIGALARM

 Some process resources are “invented” - don't match any
hardware feature

● “current directory” and “umask”

● Virtualization is “more like hardware” than processes
 What runs inside virtualization is an operating system

Process : Kernel :: Kernel : Virtual-machine monitor

10

Process

Kernel

Process Process

Physical Machine

Process/Kernel Stack

11

Process

Kernel

Process Process

Virtual Machine

Kernel

Virtual Machine Monitor (VMM)

Kernel Kernel

P P P P P P P P P

Physical Machine

Virtualization Stack

12

Why Use Virtualization?

● Run two operating systems on the same machine!

 “Windows+Linux” was VMware's first business model
 Hobbyists like to run ancient-history OS's

● Debugging OS's is more pleasant
 Also: instrumenting what an OS does
 Monitoring a captive OS for security infestations

● “Process abstraction” at the kernel layer
 Separate file system

 Multiple machine owners

 Better protection than one kernel's processes (in theory)
● “Small, secure” hypervisor, “small, fair” scheduler

13

Why Use Virtualization?

● Huge impact on enterprise hosting

 No longer need to sell whole machines

 Sell machine slices
● “xx GB RAM, yy cores” - smoother than “n Dell PowerEdge

2600's”
● Can put competitors on the same physical hardware

● Can separate instance of VM from instance of hardware
 Live migration of VM from machine to machine

● Deal with machine failures or machine-room flooding

 VM replication to provide fault tolerance
● “Why bother doing it at the application level?”

● Can overcommit hardware
 Most VM's are not 100% busy all the time
 If one suddenly becomes 100% busy, move it to a

dedicated machine for a few hours, then move it back

14

Virtualization in Enterprise

● Separates product (OS services) from physical
resources (server hardware)

● Live migration example:

VM 2
Server 1

VM 1
P P P P P P

VM 4
Server 3

P P P

VM 3
Server 2

P P P
VM 1

P P P

VM 2
P P P

17

Outline

● Introduction
 What, why?

● Basic techniques
 Simulation
 Binary translation

● Kinds of instructions
● Virtualization

 x86 Virtualization
 Paravirtualization

● Summary

18

Full-System Simulation
(Simics 1998)

● Software simulates hardware components that make up
a target machine

 Interpreter executes each instruction & updates the
software representation of the hardware state

● Approach is very accurate but very slow

● Great for OS development & debugging

 “Break on triple fault” is better than real hardware
suddenly rebooting

 Possible to debug a driver for a hardware device that
hasn't been built yet

19

System Emulation
(Bochs, DOSBox, QEMU, fake86)

● Emulate just enough of hardware components to create
an accurate “user experience”

● Typically CPU & memory are emulated
 Buses are not
 Devices communicate with CPU & memory directly

● Shortcuts are taken to achieve better performance
 Reduces overall system accuracy
 Code designed to run correctly on real hardware executes

“pretty well”
 Code not designed to run correctly on real hardware

exhibits wildly divergent behavior

20

System Emulation Techniques

● Pure interpretation:
 Interpret each guest instruction

 Perform a semantically equivalent operation on host

● Static translation:

 Translate each guest instruction to host instructions once

 Example: DEC “mx” translator

● Input: MIPS Ultrix executable
● Output: Alpha OSF/1 executable

 Limited applicability; self-modifying code doesn't work

21

System Emulation Techniques

● Dynamic translation:

 Translate a block of guest instructions to host
instructions just prior to execution of that block

 Cache translated blocks for better performance

 Like a Smalltalk/Java “JIT”

● Dynamic recompilation & adaptive optimization:

 Discover which algorithm the guest code implements

 Substitute with an optimized version on the host

 Hard

22

Outline

● Introduction
 What, why?

● Basic techniques
 Simulation
 Binary translation

● Kinds of instructions
● Virtualization

 x86 Virtualization
 Paravirtualization

● Summary

23

Kinds of Instructions

● “Regular”
 ADD, XOR
 Load, store
 Branch, push, pop

● “Special”
 CLI/STI, HLT, read/modify %cr3

● Devices (magic side-effects)
 INB/OUTB
 Stores into video RAM!

● How do we emulate?
 “Regular”, “Special” - just simulate the CPU
 Devices – very difficult!

● Thousands of devices exist, each one is extremely complex
● A device emulator may be 100 lines of code, or 10,000

24

The Need for Speed

● “Slow” is easy
 Simulation is naturally slow
 Binary translation requires lots of “compilation”

● Key observation
 “Run virtual X on physical X” should be faster than “run

virtual X on physical Y”
 “x86 on x86” should be faster than “x86 on PowerPC”
 We don't need to simulate hardware if we can use it

● “The best simulation of REP STOSB is REP STOSB”

● while(1):
 Find a big block of “regular” instructions
 Load up register values, jump to start of block

● These instructions run at full speed

 When something goes wrong, figure out a fix
● This part is slow

25

Outline

● Introduction
 What, why?

● Basic techniques
 Simulation
 Binary translation

● Kinds of instructions
● Virtualization

 x86 Virtualization
 Paravirtualization

● Summary

26

Full Virtualization

● IBM CP-40 (1967)

 Supported 14 simultaneous S/360 virtual machines

● Later evolved into CP/CMS and VM/CMS (still in use)
 1,000 mainframe users, each with a private mainframe,

running a text-based single-process “OS”
● Popek & Goldberg: Formal Requirements for

Virtualizable Third Generation Architectures (1974)

 Defines characteristics of a Virtual Machine Monitor
(VMM)

 Describes a set of architecture features sufficient to
support virtualization

27

Virtual Machine Monitor

● Equivalence:

 Provides an environment essentially identical with the
original machine

● Efficiency:

 Programs running under a VMM should exhibit only minor
decreases in speed

● Resource Control:

 VMM is in complete control of system resources

Process : Kernel :: VM : VMM

28

Popek & Goldberg Instruction
Classification

● Sensitive instructions:

 Attempt to change configuration of system resources

● Disable interrupts
● Change count-down timer value
● ...

 Illustrate different behaviors depending on system
configuration

● Privileged instructions:

 Trap if the processor is in user mode

 Do not trap in supervisor mode

29

Popek & Goldberg Theorem

“... a virtual machine monitor may be constructed if the
set of sensitive instructions for that computer is a
subset of the set of privileged instructions.”

● Each instruction must either:

 Exhibit the same result in user and supervisor modes

 Else trap if executed in user mode

● Then a VMM can run a guest kernel in user mode!
 Sensitive instructions are trapped, handled by VMM

● Architectures that meet this requirement:

 IBM S/370, Motorola 68010+, PowerPC, others.

30

x86 Virtualization

● x86 ISA (pre-2005) does not meet the Popek & Goldberg
requirements for virtualization!

● ISA contains 17+ sensitive, unprivileged instructions:

 SGDT, SIDT, SLDT, SMSW, PUSHF, POPF, LAR, LSL,
VERR, VERW, POP, PUSH, CALL, JMP, INT, RET,
STR, MOV

 Most simply reveal that the “kernel” is running in user
mode

● PUSHF
● PUSH %CS

 Some execute inaccurately
● POPF

● Virtualization is still possible, requires workarounds

31

The “POPF Problem”

PUSHF # %EFLAGS onto stack

ANDL $0x003FFDFF, (%ESP) # Clear IF on stack

POPF # %EFLAGS from stack

● If run in supervisor mode, interrupts are now off

● What “should” happen if this is run in user mode?

32

The “POPF Problem”

PUSHF # %EFLAGS onto stack

ANDL $0x003FFDFF, (%ESP) # Clear IF on stack

POPF # %EFLAGS from stack

● If run in supervisor mode, interrupts are now off

● What “should” happen if this is run in user mode?

 Attempting a privileged operation should trap to VMM
 If it doesn't trap, the VMM can't simulate it

● Because the VMM won't even know it happened

● What happens on the x86?

33

The “POPF Problem”

PUSHF # %EFLAGS onto stack

ANDL $0x003FFDFF, (%ESP) # Clear IF on stack

POPF # %EFLAGS from stack

● If run in supervisor mode, interrupts are now off

● What “should” happen if this is run in user mode?

 Attempting a privileged operation should trap to VMM
 If it doesn't trap, the VMM can't simulate it

● Because the VMM won't even know it happened

● What happens on the x86?
 CPU “helpfully” ignores changes to privileged bits when

POPF runs in user mode!
 So that sequence does nothing, no trap, VMM can't simulate

34

VMware (1998)

● Runs guest operating system in ring 3

 Maintains the illusion of running the guest in ring 0

● Insensitive instruction sequences run by CPU at full
speed:

 movl 8(%ebp), %ecx

 addl %ecx, %eax

● Privileged instructions trap to the VMM:

 cli

● Sensitive, unprivileged instructions handled by binary
translation:

 popf ⇒ int $99

37

Virtual Memory

● We've virtualized instruction execution
 How about other resources?

● Kernels use physical memory to implement virtual
memory
 How do we virtualize physical memory?

● Each guest kernel must be protected from the others, so we
can't let them access physical memory

● Ok, use virtual memory (obvious so far, isn’t it?)

38

Virtual Memory

● We've virtualized instruction execution
 How about other resources?

● Kernels use physical memory to implement virtual
memory
 How do we virtualize physical memory?

● Each guest kernel must be protected from the others, so we
can't let them access physical memory

● Ok, use virtual memory (obvious so far, isn’t it?)

 But guest kernels themselves provide virtual memory to
their processes

● They like to “MOVL %EAX, %CR3”
● We can't allow them to do that!
● Can we simulate it??

39

VM – Guest-kernel view

Page

Frame

Guest believes
its RAM has
frames 0..N

40

VM – Fiction vs. Reality

Virtual Page

Virtual Frame

Guest view

Physical Frame

Guest believes
this is a frame
number, but it's
just a number

Actual frame
number – guest
kernel must not
be allowed to
specify!

41

VM – How to do it?

Virtual Page

Virtual Frame

Guest view

Physical Frame

Guest believes
this is a frame
number, but it's
just a number

Actual frame
number – guest
kernel must not
be allowed to
specify!

Note: traditional x86 VM hardware does not implement “map, then map again”

42

VM – How to do it?

Virtual Page

Virtual Frame

Guest view

Physical Frame

Guest believes
this is a frame
number, but it's
just a number

Actual frame
number – guest
kernel must not
be allowed to
specify!

This is what
must go
into the
actual page
table

43

VM – Shadow Page Tables

Guest view

Virtual Page

Virtual Page

Virtual Page

Virtual Frame

Virtual Frame

Virtual Frame

v %cr3

Reality

Frame

Frame

Frame

Page

Page

Page

%cr3

“Page-table compiler” -
Runs on “MOVL %EAX, %CR3”
Also runs on INVLPG

44

Shadow Page Tables

● Accesses to %cr3 are trapped by hardware
 Store into %cr3?

● “Compile” guest-kernel page table into real page table
 Map guest frame numbers into actual frame numbers

● Secretly set %cr3 to point to real page table

 Fetch from %cr3?
● Return the guest-kernel “physical” address of the virtual

page table in guest-kernel virtual memory, not the physical
address of the actual page table in physical memory

45

Shadow Page Tables

● Accesses to %cr3 are trapped by hardware
 Store into %cr3?

● “Compile” guest-kernel page table into real page table
 Map guest frame numbers into actual frame numbers

● Secretly set %cr3 to point to real page table

 Fetch from %cr3?
● Return the guest-kernel “physical” address of the virtual

page table in guest-kernel virtual memory, not the physical
address of the actual page table in physical memory

● Accesses to guest-kernel page tables are special too!
 It's ok for the guest kernel to examine its fake page table
 But if guest stores into a fake PTE, we must re-compile
 So virtual page tables are read-only pages for the guest

46

Shadow Page Tables

● Accesses to %cr3 are trapped by hardware
 Store into %cr3?

● “Compile” guest-kernel page table into real page table
 Map guest frame numbers into actual frame numbers

● Secretly set %cr3 to point to real page table

 Fetch from %cr3?
● Return the guest-kernel “physical” address of the virtual

page table in guest-kernel virtual memory, not the physical
address of the actual page table in physical memory

● Accesses to guest-kernel page tables are special too!
 It's ok for the guest kernel to examine its fake page table
 But if guest stores into a fake PTE, we must re-compile
 So virtual page tables are read-only pages for the guest

● Guest kernel sets some pages to “kernel only”
 Each guest page table compiles to two real page tables

● guest-kernel-mode has all pages, guest-user-mode doesn't

47

Wow, This is Hard!

● Many tricks played to improve performance
 Compiling page-tables is slow, so cache old compilations
 When to garbage-collect them?

● PTE's contain dirty & accessed bits
 Won't cover that today

● Is there an easier way??

48

Wow, This is Hard!

● Many tricks played to improve performance
 Compiling page-tables is slow, so cache old compilations
 When to garbage-collect them?

● PTE's contain dirty & accessed bits
 Won't cover that today

● Is there an easier way??
1. Fix the hardware

2. Blur the hardware (“paravirtualization”)

49

Hardware Assisted Virtualization

● Modern x86's do meet Popek & Goldberg requirements

 Intel VT-x (2005), AMD-V (2006)

● VT-x introduces two new operating modes:

 “VMX root” operation & “VMX non-root” operation

 VMM runs in VMX root, guest OS runs in non-root

● Both modes support all privilege rings

 Guest OS runs in (non-root) ring 0

● VMM tells hardware “Enter guest mode, but trap on these
conditions: ...”

● If guest kernel runs a sensitive instruction, hardware does a
“VM exit” back to VMM, indicates why

● 2nd-generation VT-x has “EPT”: hardware fix for VM
 Host sets up page tables giving “virtual physical pages”

to guest
 Guest page tables map “virtual virtual pages” to them

50

Paravirtualization
(Denali 2002, Xen 2003)

● Motivation
 Binary translation and shadow page tables are hard

● First observation:
 If OS is open-source, it can be modified at the source

level to make virtualization explicit (not transparent), and
easier

● Replace “MOVL %EAX, %CR3” with “install_page_table()”
● Typically only a small fraction of the guest kernel needs to

be edited
● Guest user code is not changed at all

● Paravirtualizing VMMs (hypervisors) virtualize only a
subset of the x86 execution environment
 Run guest kernels in rings 1-3

● No illusion about running in a virtual environment
● Guest kernels may not use sensitive, unprivileged

instructions and expect a privileged result

51

Paravirtualization
(Denali 2002, Xen 2003)

● Second observation:

 Regular VMMs must emulate hardware for devices

● Disk, Ethernet, etc

● Performance is poor due to constrained device API
 To “send packet”, must emulate many device-register

accesses (inb/outb or MMIO, interrupt enable/disable)
 Each step results in a trap

 Already modifying guest kernel, why not provide virtual
device drivers?

● Virtual Ethernet could export send_packet(addr, len)
 This requires only one trap

● “Hypercall” interface:
syscall : kernel :: hypercall : hypervisor

55

Outline

● Introduction
 What, why?

● Basic techniques
 Simulation
 Binary translation

● Kinds of instructions
● Virtualization

 x86 Virtualization
 Paravirtualization

● Summary

56

Are We Having Fun Yet?

● Virtualization is great if you need it

 If you must have 35 /etc/passwd's, 35 sets of users, 35
Ethernet cards, etc.

 There are many techniques, which work (are secure and
fast enough)

● Virtualization is overkill if we need only isolation
 Remember the Java “virtual machine”??

● Secure isolation for multiple applications
● Old approach – Smalltalk (1980)
● New approach – Google App Engine, Heroku, etc.

● Open question
 How best to get isolation, machine independence?

57

Summary

● What virtualization does

 Multiple OS's on one laptop
 Debugging, security analysis
 Enterprise

● Efficiency
● Reliability (outage resistance)

● The problem

 Kinds of instructions
● Solutions

 Binary translation (useful for light-weight uses)
 {Full, hardware assisted, para-}virtualization

● Many things not covered today!
 “I/O virtualization” - attaching real devices to virtual

machines
 ...

58

Further Reading
● Gerald J. Popek and Robert P. Goldberg.

Formal requirements for virtualizable third generation architectures.
Communications of the ACM, 17(7):412-421, July 1974.

● John Scott Robin and Cynthia E. Irvine.
Analysis of the Intel Pentium’s ability to support a secure virtual machine monitor.
In Proceedings of the 9th USENIX Security Symposium, Denver, CO, August 2000.

● Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig.
Intel Virtualization Technology: Hardware support for efficient processor virtualization.
Intel Technology Journal, 10(3):167-177, August 2006.

● Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer,
Ian Pratt, and Andrew Warfield.
Xen and the Art of Virtualization.
In Proceedings of the 19th ACM Symposium on Operating Systems Principles, pages 164-177,
Bolton Landing, NY, October 2003.

● Yaozu Dong, Shaofan Li, Asit Mallick, Jun Nakajima, Kun Tian, Xuefei Xu, Fred Yang, and
Wilfred Yu. Extending Xen with Intel Virtualization Technology.
Intel Technology Journal, 10(3):193-203, August 2006.

● Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization: A scalable, high-performance alternative to
hypervisors.
In Proceedings of the 2007 EuroSys conference, Lisbon, Portugal, March 2007.

● Fabrice Bellard.
QEMU, a fast and portable dynamic translator.
In Proceedings of the 2005 USENIX Annual Technical Conference , Anaheim, CA, April 2005.

