15-410

“...Everything old is new again...”

Schedulin
Nov. 5, 20

Dave Eckhardt
Dave O'Hallaron
Roger Dannenberg

15-410, F17

Outline

Chapter 5 (or Chapter 7): Scheduling

= Scheduling-people/textbook terminology note
= “Waiting time” means “time spent runnable but stuck in a
scheduler queue”
= Not “time waiting for the actual event to awaken you”!
= “Task” means “something a scheduler schedules” (we say
“thread” or sometimes “runnable”)

15-410, F17

CPU-I/O Cycle

Process view: 2 states
= Running
= Blocked on I/0

Life Cycle:
= |/O (loading executable), CPU, I/O, CPU, .., CPU (exit ())

System view
= Running
= Blocked on I/0
= Runnable (i.e. Waiting) — not enough processors right now

Running = blocked mostly depends on program
= How long do processes run before blocking?

15-410, F17

CPU Burst Lengths

In general
= Exponential fall-off in CPU burst length

120

20

\ \ \ \ \ \
0 5 10 15 20 25 30

15-410, F17

CPU Burst Lengths

“CPU-bound” program
= Batch job
= Long CPU bursts

15-410, F17

CPU Burst Lengths

“iVO-bound” program
= Copy, Data acquisition, ...
= Tiny CPU bursts between system calls

120

100

80

60

40

20

10

15

20

25

30

15-410, F17

Why Scheduling?

What if we let a CPU-bound program run to
completion?
= What happens to I/0-bound programs?

What if we run an VO-bound program whenever it is
runnable?

= What happens to CPU-bound programs?

15-410, F17

Preemptive?

Four opportunities to schedule
= A running process blocks (I/0, page fault, wait(), ...)
= A running process exits
= A blocked process becomes runnable (I/O done)
= Other interrupt (clock)

Multitasking types
= Fully Preemptive: All four cause scheduling
= “Cooperative”: only first two

15-410, F17

Preemptive kernel?

Preemptive multitasking
= All four cases cause context switch

Preemptive kernel
= All four cases cause context switch in kernel mode

= This is a goal of Project 3
= System calls: interrupt disabling only when really necessary
= Clock interrupts should suspend system call execution
= So fork() should appear atomic, but not execute that way

15-410, F17

10

CPU Scheduler

Invoked when CPU becomes idle and/or time passes
= Current task blocks
= Clock interrupt

Select next task
= Quickly
= PCB's in: FIFO, priority queue, tree, ...

Switch (using “dispatcher”)
= Your term may vary

15-410, F17

11

Dispatcher

Set down running task
= Save register state
= Update CPU usage information
= Store PCB in “run queue”

Pick up designated task

= Activate new task's memory
= Protection, mapping

= Restore register state
= “Return” to whatever the task was previously doing

15-410, F17

Consider...

Who goes first? Last?

12 15-410, F'17

Consider...

| | |::::A‘:: - | | |

HHH R e R iR

iy Ty N G Wi E
6 o (] - 6 o 6 o [-]

Who goes first? Last?
Now who goes first? Last?

13

15-410, F'17

Consider...

6 o 6 o 6 o & & o

Who goes first? Last?
Now who goes first? Last?
Does this change things?

14

o0
o0
L2
‘/"‘
o
]
>

<
o
=
N
B
<
<=
72}

%)

=
3
g
Q

=

15-410, F17

Scheduling Criteria

System administrator view

= Maximize/trade off
= CPU utilization (“busy-ness”)
= Was important when buying computers was expensive
= Now heat and power often cost more than silicon
= Throughput (“jobs per second”)

Process view
= Minimize
= Turnaround time (everything, fork() to exit())
= Waiting time (runnable but not running)

User view (interactive processes)
= Minimize response time (input/output latency)
= Predictable response time (“Why is it slow today??”)

15 15-410, F17

16

Algorithms

Don't try these at home
- FCFS
- SJF
= Priority

Reasonable
= Round-Robin
= Multi-level (plus feedback)

Multiprocessor
= Load balancing
= Processor affinity

Real-time

15-410, F17

FCFS- First Come, First Served

Basic idea
= Run task until it relinquishes CPU
= When runnable, place at end of FIFO queue

Waiting time very dependent on mix
= Some processes run briefly, some much longer

“Convoy effect”
= N tasks each make 1 I/O request, stall (e.g., file copy)

= 1 task executes very long CPU burst
= All I/O tasks become runnable during this time

= Lather, rinse, repeat
= Result: N “I/O-bound tasks” can't keep I/O devices busy!

17 15-410, F'17

18

SJF- Shortest Job First

Basic idea
= Choose task with shortest next CPU burst

= Will give up CPU soonest, be “nicest” to other tasks
= Provably “optimal”
= Minimizes average waiting time across tasks
= Practically impossible (oh, well)
= Could predict next burst length...
= Text suggests averaging recent burst lengths
= Does not present evaluation (Why not? Hmm...)

15-410, F17

SJF- Shortest Job First

Basic idea
= Choose task with shortest next CPU burst

= Will give up CPU soonest, be “nicest” to other tasks

= Provably “optimal”
= Minimizes average waiting time across tasks
= Practically impossible (oh, well)
= Could predict next burst length...
= Text suggests averaging recent burst lengths
= Does not present evaluation (Why not? Hmm...)
= Sometimes applications can state their remaining work

= Harchol-Balter et al., “Size-Based Scheduling to
Improve Web Performance”, ACM TOCS 21:2, 5/2003

15-410, F17

Priority

Basic idea

= Choose “most important” waiting task
= (Nomenclature: does “high priority” mean p=0 or p=255?)

Priority assignment
= Static: fixed property (engineered?)
= Dynamic: function of task behaviour

Big problem: Starvation
= “Most important” task gets to run often
= “Least important” task may never run
= Common hack: priority “ageing”

20 15-410, F'17

Round-Robin

Basic idea
= Run each task for a fixed “time quantum”

= When quantum expires, append to FIFO queue

“Fair”
= But not “provably optimal”

Choosing quantum length
= Infinite (until process does I/0) = FCFS

= Infinitesimal (1 instruction) = “Processor sharing”
= A technical term used by theory folks

» Balance ‘“fairness” vs. context-switch costs

21

15-410, F17

True “Processor Sharing”

CDC Peripheral Processors -
Memory latency

= Long, fixed constant

= Every instruction has a
memory operand Processor Core

Solution: round robin
= Quantum =1 instruction

Register Set
Register Set
Register Set
Register Set
Register Set

15-410, F17

23

True “Processor Sharing”

CDC Peripheral Processors

Memory latency
= Long, fixed constant

= Every instruction has a
memory operand

Solution: round robin
= Quantum =1 instruction
= One “process” running

= N-1 “processes” waiting
on memory

Processor Core

15-410, F'17

Register Set

24

True “Processor Sharing”

Each instruction
= “Brief” computation

= One load or one store
= Sleeps process N cycles

Steady state
= Run when you're ready
= Ready when it's your turn

Processor Core

Register Set

15-410, F'17

25

Everything Old Is New Again

Intel “hyperthreading”
= N register sets
= M functional units

= Switch on long-running
operations

= Sharing less regular

= Sharing illusion more lumpy
= Good for some application
mixes
= Awful for others
= “Hyperthreading Hurts Server
Performance, Say Developers”
- ZDNet UK, 2005-11-18

Processor Core

Register Set

15-410, F'17

26

Multi-level Queue

N independent process queues
= One per priority
= Algorithm per-queue

Priority O
Priority 1

Batch

R. Robin
R. Robin

FCFS

15-410, F17

27

Multi-level Queue

Inter-queue scheduling?
= Strict priority
= Pri 0 runs before Pri 1, Pri 1 runs before batch — every time
= Time slicing (e.g., weighted round-robin)
= Pri 0 gets 2 slices

= Pri1 gets 1 slice
= Batch gets 1 slice

15-410, F17

28

Multi-level Feedback Queue

N queues, different quanta

Block/sleep before quantum expires?
= Added to end of your queue (“good runnable”)

Exhaust your quantum?

= Demoted to slower queue (“bad runnable!”)
= Lower priority, typically longer quantum

Can you be promoted back up?
= Maybe I/0 promotes you
= Maybe you “age” upward

Popular “time-sharing” scheduler

15-410, F17

29

Multiprocessor Scheduling

Common assumptions
= Homogeneous processors (same speed)
= Uniform memory access (UMA)

Goal: Load sharing / Load balancing
= “Easy”: single global ready queue — no false idleness

15-410, F17

30

Multiprocessor Scheduling

Common assumptions
= Homogeneous processors (same speed)
= Uniform memory access (UMA)

Goal: Load sharing / Load balancing
= “Easy”: single global ready queue — no false idleness

But!
= Single global ready queue is a contention “hot spot”

= “Processor Affinity”: some processor may be more
desirable or necessary
= Special I/0 device
= Fast thread switch

= Resuming onto most-recent CPU may find some stuff
still cached

= 1/N* of memory may be faster - “NUMA”
15-410, F’17

31

Scheduler Evaluation
Approaches

“Deterministic modeling”
= aka “hand execution”

Queueing theory
= Often gives fast and useful approximations
= Math gets big fast

= Math sensitive to assumptions
= May be unrealistic (aka “wrong”)

Simulation
= Workload model or trace-driven
= GIGO hazard (either way)

15-410, F17

32

Real-Time Scheduling

What'’s a computation worth?

time —

“Real Time”: No (extra) value if early
(or in some cases, curve just falls off fast)

time — time —

time —
15-410, F'17

“Hard Real-Time” = ?

Multiple definitions are used

= “Very fast response time” —
10us?

= “No value” if results are late

= “Very costly” if late

= “Never” late “No value”

“Very costly”

33 15-410, F17

34

Hard Real-Time Scheduling

Designers must describe task requirements
= Worst-case execution time of instruction sequences

“Prove” system response time
= Argument or automatic verifier

Cannot use indeterminate-time technologies
= Disks... Networks...

Solutions often involve
= Simplified designs
= Over-engineered systems
= Dedicated hardware
= Specialized OS

15-410, F17

35

Soft Real-Time Scheduling

Computation still has value after deadline
= Think “User Interface”

= Many control systems

= (if the fly-by-wire system doesn’t move the elevator within
50ms, probably still good to to it within 100ms)

Performance is not critical (no one will die)
= YouTube video

= Skype
= Note that late packets cause audio drop-out.

= CD-R writing software
= Resulting CD can be corrupted

15-410, F17

36

Soft Real-Time Scheduling

Now commonly supported in generic OS
= POSIX real-time extensions for Unix

Priority-based scheduler
Preemptible kernel implementation

15-410, F17

Summary

Round-robin is ok for simple cases
= Certainly 80% of the conceptual weight

= Certainly good enough for P3
= Speaking of P3...
= Understand preemption, don't evade it

“Real” systems
= Some multi-level feedback
= Probably some soft real-time
= Multi-processor scheduling is a big deal

Real-Time Systems Concepts
= Terminology: soft, hard, deadline
= Key issue: “priority inversion” (see text)

37

15-410, F17

