
15-410, F’171

Scheduling
Nov. 5, 2017

Dave Eckhardt Dave Eckhardt

Dave O'HallaronDave O'Hallaron

Roger DannenbergRoger Dannenberg

15-410
“...Everything old is new again...”

15-410, F’172

Outline

Chapter 5 (or Chapter 7): SchedulingChapter 5 (or Chapter 7): Scheduling
 Scheduling-people/textbook terminology note

 “Waiting time” means “time spent runnable but stuck in a
scheduler queue”

 Not “time waiting for the actual event to awaken you”!
 “Task” means “something a scheduler schedules” (we say

“thread” or sometimes “runnable”)

15-410, F’173

CPU-I/O Cycle

ProcessProcess view: 2 states view: 2 states
 Running
 Blocked on I/O
Life Cycle:

 I/O (loading executable), CPU, I/O, CPU, .., CPU (exit())

SystemSystem view view
 Running
 Blocked on I/O
 Runnable (i.e. Waiting) – not enough processors right now

Running Running ⇒⇒ blocked mostly depends on program blocked mostly depends on program
 How long do processes run before blocking?

15-410, F’174

CPU Burst Lengths

In generalIn general
 Exponential fall-off in CPU burst length

0 5 10 15 20 25 30

0

20

40

60

80

100

120

15-410, F’175

CPU Burst Lengths

““CPU-bound” programCPU-bound” program
 Batch job
 Long CPU bursts

0 5 10 15 20 25 30

0

20

40

60

80

100

120

15-410, F’176

CPU Burst Lengths

““I/O-bound” programI/O-bound” program
 Copy, Data acquisition, ...
 Tiny CPU bursts between system calls

0 5 10 15 20 25 30

0

20

40

60

80

100

120

15-410, F’177

Why Scheduling?

What if we let a CPU-bound program run toWhat if we let a CPU-bound program run to
completion?completion?

 What happens to I/O-bound programs?

What if we run an I/O-bound program whenever it isWhat if we run an I/O-bound program whenever it is
runnable?runnable?

 What happens to CPU-bound programs?

15-410, F’178

Preemptive?

Four opportunities to scheduleFour opportunities to schedule
 A running process blocks (I/O, page fault, wait(), ...)
 A running process exits
 A blocked process becomes runnable (I/O done)
 Other interrupt (clock)

Multitasking typesMultitasking types
 Fully Preemptive: All four cause scheduling
 “Cooperative”: only first two

15-410, F’179

Preemptive kernel?

Preemptive multitaskingPreemptive multitasking
 All four cases cause context switch

Preemptive Preemptive kernelkernel
 All four cases cause context switch in kernel mode
 This is a goal of Project 3

 System calls: interrupt disabling only when really necessary
 Clock interrupts should suspend system call execution

 So fork() should appear atomic, but not execute that way

15-410, F’1710

CPU Scheduler

Invoked when CPU becomes idle and/or time passesInvoked when CPU becomes idle and/or time passes
 Current task blocks
 Clock interrupt

Select next taskSelect next task
 Quickly
 PCB's in: FIFO, priority queue, tree, ...

Switch (using “dispatcher”)Switch (using “dispatcher”)
 Your term may vary

15-410, F’1711

Dispatcher

Set down running taskSet down running task
 Save register state
 Update CPU usage information
 Store PCB in “run queue”

Pick up designated taskPick up designated task
 Activate new task's memory

 Protection, mapping
 Restore register state
 “Return” to whatever the task was previously doing

15-410, F’1715

Scheduling Criteria

System administrator viewSystem administrator view
 Maximize/trade off

 CPU utilization (“busy-ness”)
 Was important when buying computers was expensive
 Now heat and power often cost more than silicon

 Throughput (“jobs per second”)

Process viewProcess view
 Minimize

 Turnaround time (everything, fork() to exit())
 Waiting time (runnable but not running)

User view (interactive processes)User view (interactive processes)
 Minimize response time (input/output latency)
 Predictable response time (“Why is it slow today??”)

15-410, F’1716

Algorithms

Don't try these at homeDon't try these at home
 FCFS
 SJF
 Priority

ReasonableReasonable
 Round-Robin
 Multi-level (plus feedback)

MultiprocessorMultiprocessor
 Load balancing
 Processor affinity

Real-timeReal-time

15-410, F’1717

FCFS- First Come, First Served

Basic ideaBasic idea
 Run task until it relinquishes CPU
 When runnable, place at end of FIFO queue

Waiting time Waiting time veryvery dependent on mix dependent on mix
 Some processes run briefly, some much longer

““Convoy effect”Convoy effect”
 N tasks each make 1 I/O request, stall (e.g., file copy)
 1 task executes very long CPU burst

 All I/O tasks become runnable during this time
 Lather, rinse, repeat

 Result: N “I/O-bound tasks” can't keep I/O devices busy!

15-410, F’1718

SJF- Shortest Job First

Basic ideaBasic idea
 Choose task with shortest next CPU burst
 Will give up CPU soonest, be “nicest” to other tasks
 Provably “optimal”

 Minimizes average waiting time across tasks
 Practically impossible (oh, well)

 Could predict next burst length...
 Text suggests averaging recent burst lengths

 Does not present evaluation (Why not? Hmm...)

15-410, F’1719

SJF- Shortest Job First

Basic ideaBasic idea
 Choose task with shortest next CPU burst
 Will give up CPU soonest, be “nicest” to other tasks
 Provably “optimal”

 Minimizes average waiting time across tasks
 Practically impossible (oh, well)

 Could predict next burst length...
 Text suggests averaging recent burst lengths

 Does not present evaluation (Why not? Hmm...)
 Sometimes applications can state their remaining work

 Harchol-Balter et al., “Size-Based Scheduling to
Improve Web Performance”, ACM TOCS 21:2, 5/2003

15-410, F’1720

Priority

Basic ideaBasic idea
 Choose “most important” waiting task

 (Nomenclature: does “high priority” mean p=0 or p=255?)

Priority assignmentPriority assignment
 Static: fixed property (engineered?)
 Dynamic: function of task behaviour

Big problem: Big problem: StarvationStarvation
 “Most important” task gets to run often
 “Least important” task may never run
 Common hack: priority “ageing”

15-410, F’1721

Round-Robin

Basic ideaBasic idea
 Run each task for a fixed “time quantum”
 When quantum expires, append to FIFO queue

““Fair”Fair”
 But not “provably optimal”

Choosing quantum lengthChoosing quantum length
 Infinite (until process does I/O) = FCFS
 Infinitesimal (1 instruction) = “Processor sharing”

 A technical term used by theory folks
 Balance “fairness” vs. context-switch costs

15-410, F’1722

True “Processor Sharing”

CDC Peripheral ProcessorsCDC Peripheral Processors

Memory latencyMemory latency
 Long, fixed constant
 Every instruction has a

memory operand

Solution: round robinSolution: round robin
 Quantum = 1 instruction

Memory

Processor Core

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

15-410, F’1723

True “Processor Sharing”

CDC Peripheral ProcessorsCDC Peripheral Processors

Memory latencyMemory latency
 Long, fixed constant
 Every instruction has a

memory operand

Solution: round robinSolution: round robin
 Quantum = 1 instruction
 One “process” running
 N-1 “processes” waiting

on memory

Memory

Processor Core

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

15-410, F’1724

True “Processor Sharing”

Each instructionEach instruction
 “Brief” computation
 One load or one store

 Sleeps process N cycles

Steady stateSteady state
 Run when you're ready
 Ready when it's your turn

Memory

Processor Core

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

15-410, F’1725

Everything Old Is New Again

Intel “hyperthreading”Intel “hyperthreading”
 N register sets
 M functional units
 Switch on long-running

operations
 Sharing less regular
 Sharing illusion more lumpy

 Good for some application
mixes

 Awful for others
 “Hyperthreading Hurts Server

Performance, Say Developers”
- ZDNet UK, 2005-11-18

Memory

Processor Core

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

15-410, F’1726

Multi-level Queue

N independent process queuesN independent process queues
 One per priority
 Algorithm per-queue

Priority 0 P1 P7

Priority 1 P2 P9 P3

Batch P0 P4

R. Robin

R. Robin

FCFS

15-410, F’1727

Multi-level Queue

Inter-queue scheduling?Inter-queue scheduling?
 Strict priority

 Pri 0 runs before Pri 1, Pri 1 runs before batch – every time
 Time slicing (e.g., weighted round-robin)

 Pri 0 gets 2 slices
 Pri 1 gets 1 slice
 Batch gets 1 slice

15-410, F’1728

Multi-level Feedback Queue

N queues, different quantaN queues, different quanta

Block/sleep before quantum expires?Block/sleep before quantum expires?
 Added to end of your queue (“good runnable”)

Exhaust your quantum?Exhaust your quantum?
 Demoted to slower queue (“bad runnable!”)

 Lower priority, typically longer quantum

Can you be promoted back up?Can you be promoted back up?
 Maybe I/O promotes you
 Maybe you “age” upward

Popular “time-sharing” schedulerPopular “time-sharing” scheduler

15-410, F’1729

Multiprocessor Scheduling

Common assumptionsCommon assumptions
 Homogeneous processors (same speed)
 Uniform memory access (UMA)

Goal: Load sharing / Load balancingGoal: Load sharing / Load balancing
 “Easy”: single global ready queue – no false idleness

15-410, F’1730

Multiprocessor Scheduling

Common assumptionsCommon assumptions
 Homogeneous processors (same speed)
 Uniform memory access (UMA)

Goal: Load sharing / Load balancingGoal: Load sharing / Load balancing
 “Easy”: single global ready queue – no false idleness

But!But!
 Single global ready queue is a contention “hot spot”
 “Processor Affinity”: some processor may be more

desirable or necessary
 Special I/O device
 Fast thread switch
 Resuming onto most-recent CPU may find some stuff

still cached
 1/Nth of memory may be faster - “NUMA”

15-410, F’1731

Scheduler Evaluation
Approaches

““Deterministic modeling”Deterministic modeling”
 aka “hand execution”

Queueing theoryQueueing theory
 Often gives fast and useful approximations
 Math gets big fast
 Math sensitive to assumptions

 May be unrealistic (aka “wrong”)

SimulationSimulation
 Workload model or trace-driven
 GIGO hazard (either way)

15-410, F’1732

Real-Time Scheduling
What’s a computation worth?What’s a computation worth?

““Real Time”: No (extra) value if earlyReal Time”: No (extra) value if early

 (or in some cases, curve just falls off fast)(or in some cases, curve just falls off fast)

time

time time time

15-410, F’1733

“Hard Real-Time” = ?

Multiple definitions are usedMultiple definitions are used
 “Very fast response time” –

10µs?
 “No value” if results are late
 “Very costly” if late
 “Never” late “No value”

“Very costly”

15-410, F’1734

Hard Real-Time Scheduling

Designers must describe task requirementsDesigners must describe task requirements
 Worst-case execution time of instruction sequences

““Prove” system response timeProve” system response time
 Argument or automatic verifier

Cannot use indeterminate-time technologiesCannot use indeterminate-time technologies
 Disks... Networks...

Solutions often involve Solutions often involve
 Simplified designs
 Over-engineered systems
 Dedicated hardware
 Specialized OS

15-410, F’1735

Soft Real-Time Scheduling

Computation still has value after deadlineComputation still has value after deadline
 Think “User Interface”
 Many control systems

 (if the fly-by-wire system doesn’t move the elevator within
50ms, probably still good to to it within 100ms)

Performance is not critical (no one will die)Performance is not critical (no one will die)
 YouTube video
 Skype

 Note that late packets cause audio drop-out.
 CD-R writing software

 Resulting CD can be corrupted

15-410, F’1736

Soft Real-Time Scheduling

Now commonly supported in generic OSNow commonly supported in generic OS
 POSIX real-time extensions for Unix

Priority-based schedulerPriority-based scheduler

Preemptible kernel implementationPreemptible kernel implementation

15-410, F’1737

Summary

Round-robin is ok for simple casesRound-robin is ok for simple cases
 Certainly 80% of the conceptual weight
 Certainly good enough for P3

 Speaking of P3...
 Understand preemption, don't evade it

““Real” systemsReal” systems
 Some multi-level feedback
 Probably some soft real-time
 Multi-processor scheduling is a big deal

Real-Time Systems ConceptsReal-Time Systems Concepts
 Terminology: soft, hard, deadline
 Key issue: “priority inversion” (see text)

