
15-410, F’171

Scheduling
Nov. 5, 2017

Dave Eckhardt Dave Eckhardt

Dave O'HallaronDave O'Hallaron

Roger DannenbergRoger Dannenberg

15-410
“...Everything old is new again...”

15-410, F’172

Outline

Chapter 5 (or Chapter 7): SchedulingChapter 5 (or Chapter 7): Scheduling
 Scheduling-people/textbook terminology note

 “Waiting time” means “time spent runnable but stuck in a
scheduler queue”

 Not “time waiting for the actual event to awaken you”!
 “Task” means “something a scheduler schedules” (we say

“thread” or sometimes “runnable”)

15-410, F’173

CPU-I/O Cycle

ProcessProcess view: 2 states view: 2 states
 Running
 Blocked on I/O
Life Cycle:

 I/O (loading executable), CPU, I/O, CPU, .., CPU (exit())

SystemSystem view view
 Running
 Blocked on I/O
 Runnable (i.e. Waiting) – not enough processors right now

Running Running ⇒⇒ blocked mostly depends on program blocked mostly depends on program
 How long do processes run before blocking?

15-410, F’174

CPU Burst Lengths

In generalIn general
 Exponential fall-off in CPU burst length

0 5 10 15 20 25 30

0

20

40

60

80

100

120

15-410, F’175

CPU Burst Lengths

““CPU-bound” programCPU-bound” program
 Batch job
 Long CPU bursts

0 5 10 15 20 25 30

0

20

40

60

80

100

120

15-410, F’176

CPU Burst Lengths

““I/O-bound” programI/O-bound” program
 Copy, Data acquisition, ...
 Tiny CPU bursts between system calls

0 5 10 15 20 25 30

0

20

40

60

80

100

120

15-410, F’177

Why Scheduling?

What if we let a CPU-bound program run toWhat if we let a CPU-bound program run to
completion?completion?

 What happens to I/O-bound programs?

What if we run an I/O-bound program whenever it isWhat if we run an I/O-bound program whenever it is
runnable?runnable?

 What happens to CPU-bound programs?

15-410, F’178

Preemptive?

Four opportunities to scheduleFour opportunities to schedule
 A running process blocks (I/O, page fault, wait(), ...)
 A running process exits
 A blocked process becomes runnable (I/O done)
 Other interrupt (clock)

Multitasking typesMultitasking types
 Fully Preemptive: All four cause scheduling
 “Cooperative”: only first two

15-410, F’179

Preemptive kernel?

Preemptive multitaskingPreemptive multitasking
 All four cases cause context switch

Preemptive Preemptive kernelkernel
 All four cases cause context switch in kernel mode
 This is a goal of Project 3

 System calls: interrupt disabling only when really necessary
 Clock interrupts should suspend system call execution

 So fork() should appear atomic, but not execute that way

15-410, F’1710

CPU Scheduler

Invoked when CPU becomes idle and/or time passesInvoked when CPU becomes idle and/or time passes
 Current task blocks
 Clock interrupt

Select next taskSelect next task
 Quickly
 PCB's in: FIFO, priority queue, tree, ...

Switch (using “dispatcher”)Switch (using “dispatcher”)
 Your term may vary

15-410, F’1711

Dispatcher

Set down running taskSet down running task
 Save register state
 Update CPU usage information
 Store PCB in “run queue”

Pick up designated taskPick up designated task
 Activate new task's memory

 Protection, mapping
 Restore register state
 “Return” to whatever the task was previously doing

15-410, F’1715

Scheduling Criteria

System administrator viewSystem administrator view
 Maximize/trade off

 CPU utilization (“busy-ness”)
 Was important when buying computers was expensive
 Now heat and power often cost more than silicon

 Throughput (“jobs per second”)

Process viewProcess view
 Minimize

 Turnaround time (everything, fork() to exit())
 Waiting time (runnable but not running)

User view (interactive processes)User view (interactive processes)
 Minimize response time (input/output latency)
 Predictable response time (“Why is it slow today??”)

15-410, F’1716

Algorithms

Don't try these at homeDon't try these at home
 FCFS
 SJF
 Priority

ReasonableReasonable
 Round-Robin
 Multi-level (plus feedback)

MultiprocessorMultiprocessor
 Load balancing
 Processor affinity

Real-timeReal-time

15-410, F’1717

FCFS- First Come, First Served

Basic ideaBasic idea
 Run task until it relinquishes CPU
 When runnable, place at end of FIFO queue

Waiting time Waiting time veryvery dependent on mix dependent on mix
 Some processes run briefly, some much longer

““Convoy effect”Convoy effect”
 N tasks each make 1 I/O request, stall (e.g., file copy)
 1 task executes very long CPU burst

 All I/O tasks become runnable during this time
 Lather, rinse, repeat

 Result: N “I/O-bound tasks” can't keep I/O devices busy!

15-410, F’1718

SJF- Shortest Job First

Basic ideaBasic idea
 Choose task with shortest next CPU burst
 Will give up CPU soonest, be “nicest” to other tasks
 Provably “optimal”

 Minimizes average waiting time across tasks
 Practically impossible (oh, well)

 Could predict next burst length...
 Text suggests averaging recent burst lengths

 Does not present evaluation (Why not? Hmm...)

15-410, F’1719

SJF- Shortest Job First

Basic ideaBasic idea
 Choose task with shortest next CPU burst
 Will give up CPU soonest, be “nicest” to other tasks
 Provably “optimal”

 Minimizes average waiting time across tasks
 Practically impossible (oh, well)

 Could predict next burst length...
 Text suggests averaging recent burst lengths

 Does not present evaluation (Why not? Hmm...)
 Sometimes applications can state their remaining work

 Harchol-Balter et al., “Size-Based Scheduling to
Improve Web Performance”, ACM TOCS 21:2, 5/2003

15-410, F’1720

Priority

Basic ideaBasic idea
 Choose “most important” waiting task

 (Nomenclature: does “high priority” mean p=0 or p=255?)

Priority assignmentPriority assignment
 Static: fixed property (engineered?)
 Dynamic: function of task behaviour

Big problem: Big problem: StarvationStarvation
 “Most important” task gets to run often
 “Least important” task may never run
 Common hack: priority “ageing”

15-410, F’1721

Round-Robin

Basic ideaBasic idea
 Run each task for a fixed “time quantum”
 When quantum expires, append to FIFO queue

““Fair”Fair”
 But not “provably optimal”

Choosing quantum lengthChoosing quantum length
 Infinite (until process does I/O) = FCFS
 Infinitesimal (1 instruction) = “Processor sharing”

 A technical term used by theory folks
 Balance “fairness” vs. context-switch costs

15-410, F’1722

True “Processor Sharing”

CDC Peripheral ProcessorsCDC Peripheral Processors

Memory latencyMemory latency
 Long, fixed constant
 Every instruction has a

memory operand

Solution: round robinSolution: round robin
 Quantum = 1 instruction

Memory

Processor Core

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

15-410, F’1723

True “Processor Sharing”

CDC Peripheral ProcessorsCDC Peripheral Processors

Memory latencyMemory latency
 Long, fixed constant
 Every instruction has a

memory operand

Solution: round robinSolution: round robin
 Quantum = 1 instruction
 One “process” running
 N-1 “processes” waiting

on memory

Memory

Processor Core

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

15-410, F’1724

True “Processor Sharing”

Each instructionEach instruction
 “Brief” computation
 One load or one store

 Sleeps process N cycles

Steady stateSteady state
 Run when you're ready
 Ready when it's your turn

Memory

Processor Core

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

15-410, F’1725

Everything Old Is New Again

Intel “hyperthreading”Intel “hyperthreading”
 N register sets
 M functional units
 Switch on long-running

operations
 Sharing less regular
 Sharing illusion more lumpy

 Good for some application
mixes

 Awful for others
 “Hyperthreading Hurts Server

Performance, Say Developers”
- ZDNet UK, 2005-11-18

Memory

Processor Core

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

Re
gi

st
er

 S
et

15-410, F’1726

Multi-level Queue

N independent process queuesN independent process queues
 One per priority
 Algorithm per-queue

Priority 0 P1 P7

Priority 1 P2 P9 P3

Batch P0 P4

R. Robin

R. Robin

FCFS

15-410, F’1727

Multi-level Queue

Inter-queue scheduling?Inter-queue scheduling?
 Strict priority

 Pri 0 runs before Pri 1, Pri 1 runs before batch – every time
 Time slicing (e.g., weighted round-robin)

 Pri 0 gets 2 slices
 Pri 1 gets 1 slice
 Batch gets 1 slice

15-410, F’1728

Multi-level Feedback Queue

N queues, different quantaN queues, different quanta

Block/sleep before quantum expires?Block/sleep before quantum expires?
 Added to end of your queue (“good runnable”)

Exhaust your quantum?Exhaust your quantum?
 Demoted to slower queue (“bad runnable!”)

 Lower priority, typically longer quantum

Can you be promoted back up?Can you be promoted back up?
 Maybe I/O promotes you
 Maybe you “age” upward

Popular “time-sharing” schedulerPopular “time-sharing” scheduler

15-410, F’1729

Multiprocessor Scheduling

Common assumptionsCommon assumptions
 Homogeneous processors (same speed)
 Uniform memory access (UMA)

Goal: Load sharing / Load balancingGoal: Load sharing / Load balancing
 “Easy”: single global ready queue – no false idleness

15-410, F’1730

Multiprocessor Scheduling

Common assumptionsCommon assumptions
 Homogeneous processors (same speed)
 Uniform memory access (UMA)

Goal: Load sharing / Load balancingGoal: Load sharing / Load balancing
 “Easy”: single global ready queue – no false idleness

But!But!
 Single global ready queue is a contention “hot spot”
 “Processor Affinity”: some processor may be more

desirable or necessary
 Special I/O device
 Fast thread switch
 Resuming onto most-recent CPU may find some stuff

still cached
 1/Nth of memory may be faster - “NUMA”

15-410, F’1731

Scheduler Evaluation
Approaches

““Deterministic modeling”Deterministic modeling”
 aka “hand execution”

Queueing theoryQueueing theory
 Often gives fast and useful approximations
 Math gets big fast
 Math sensitive to assumptions

 May be unrealistic (aka “wrong”)

SimulationSimulation
 Workload model or trace-driven
 GIGO hazard (either way)

15-410, F’1732

Real-Time Scheduling
What’s a computation worth?What’s a computation worth?

““Real Time”: No (extra) value if earlyReal Time”: No (extra) value if early

 (or in some cases, curve just falls off fast)(or in some cases, curve just falls off fast)

time 

time  time  time 

15-410, F’1733

“Hard Real-Time” = ?

Multiple definitions are usedMultiple definitions are used
 “Very fast response time” –

10µs?
 “No value” if results are late
 “Very costly” if late
 “Never” late “No value”

“Very costly”

15-410, F’1734

Hard Real-Time Scheduling

Designers must describe task requirementsDesigners must describe task requirements
 Worst-case execution time of instruction sequences

““Prove” system response timeProve” system response time
 Argument or automatic verifier

Cannot use indeterminate-time technologiesCannot use indeterminate-time technologies
 Disks... Networks...

Solutions often involve Solutions often involve
 Simplified designs
 Over-engineered systems
 Dedicated hardware
 Specialized OS

15-410, F’1735

Soft Real-Time Scheduling

Computation still has value after deadlineComputation still has value after deadline
 Think “User Interface”
 Many control systems

 (if the fly-by-wire system doesn’t move the elevator within
50ms, probably still good to to it within 100ms)

Performance is not critical (no one will die)Performance is not critical (no one will die)
 YouTube video
 Skype

 Note that late packets cause audio drop-out.
 CD-R writing software

 Resulting CD can be corrupted

15-410, F’1736

Soft Real-Time Scheduling

Now commonly supported in generic OSNow commonly supported in generic OS
 POSIX real-time extensions for Unix

Priority-based schedulerPriority-based scheduler

Preemptible kernel implementationPreemptible kernel implementation

15-410, F’1737

Summary

Round-robin is ok for simple casesRound-robin is ok for simple cases
 Certainly 80% of the conceptual weight
 Certainly good enough for P3

 Speaking of P3...
 Understand preemption, don't evade it

““Real” systemsReal” systems
 Some multi-level feedback
 Probably some soft real-time
 Multi-processor scheduling is a big deal

Real-Time Systems ConceptsReal-Time Systems Concepts
 Terminology: soft, hard, deadline
 Key issue: “priority inversion” (see text)

