
15-410,F'171

Virtual Memory #3
Oct. 10, 2017

Dave EckhardtDave Eckhardt

Dave O'HallaronDave O'Hallaron

L19_VM3

15-410
“...The cow and Zaphod...”

Synchronization

Exam Thursday!Exam Thursday!
 18:00
 Doherty Hall A302

Homework 1 due tonight!Homework 1 due tonight!
 Not at midnight!

15-410,F'173

Synchronization

First Project 3 checkpointFirst Project 3 checkpoint
 Monday during class time
 Meet in Wean 5207

 If your group number ends with

» 0-2 try to arrive 5 minutes early

» 3-5 arrive at 10:42:30

» 6-9 arrive at 10:59:27

 Preparation
 Your kernel should be in mygroup/p3ck1
 It should load one program, enter user space, gettid()

» Ideally lprintf() the result of gettid()
 We will ask you to load & run a test program we will name
 Explain which parts are “real”, which are “demo quality”

15-410,F'174

Outline

Last timeLast time
 The mysterious TLB
 Partial memory residence (demand paging) in action
 The task of the page fault handler

TodayToday
 Fun big speed hacks
 Sharing memory regions & files
 Page replacement policies

15-410,F'175

Demand Paging Performance

Effective access timeEffective access time of memory word of memory word

 (1 – p
miss

) * Tmemory + p
miss

 * Tdisk

Textbook example (a little dated)Textbook example (a little dated)
 Tmemory 100 ns

 Tdisk 25 ms

 p
miss

 = 1/1,000 slows down by factor of 250

 slowdown of 10% needs p
miss

 < 1/2,500,000!!!

15-410,F'176

Speed Hacks

COWCOW

ZFOD (Zaphod?)ZFOD (Zaphod?)

Memory-mapped filesMemory-mapped files
 What msync() is supposed to be used for...

15-410,F'177

Copy-on-Write

fork() produces two fork() produces two veryvery-similar processes-similar processes
 Same code, data, stack

Expensive to copy pagesExpensive to copy pages
 Many will never be modified by new process

 Especially in fork(), exec() case

ShareShare physical frames instead of copying? physical frames instead of copying?
 Easy: code pages – read-only
 Dangerous: stack pages!

15-410,F'178

Copy-on-Write

SimulatedSimulated copy copy
 Copy page table entries to new process
 Mark PTEs read-only in old & new
 Done! (saving factor: 1024)

 Simulation is excellent as long as process doesn't write...

15-410,F'179

Copy-on-Write

SimulatedSimulated copy copy
 Copy page table entries to new process
 Mark PTEs read-only in old & new
 Done! (saving factor: 1024)

 Simulation is excellent as long as process doesn't write...

Making it realMaking it real
 Process writes to page (Oops! We lied...)
 Page fault handler responsible

 Kernel makes a copy of the shared frame
 Page tables adjusted

» ...each process points page to private frame

» ...page marked read-write in both PTEs

15-410,F'1710

Example Page Table

Virtual Address

stack

code

data

Page table

f029VRW
f237VRX

f981VRW

15-410,F'1711

Copy-on-Write of Address Space

stack

code

data
f029VRW
f237VRX

f981VRW

P0

P9

f029VRW
f237VRX

f981VRW

15-410,F'1712

Memory Write ⇒ Permission Fault

stack

code

data
f029VRW
f237VRX

f981VRW

P0

P9

f029VRW
f237VRX

f981VRW

15-410,F'1713

Copy Into Blank Frame

stack
stack

code

data
f029VRW
f237VRX

f981VRW

P0

P9

f029VRW
f237VRX

f981VRW

15-410,F'1714

Adjust PTE frame pointer, access

stack
stack

code

data
f029VRW
f237VRX

f981VRW

P0

P9

f029VRW
f237VRX

f982VRW

15-410,F'1715

Zero Pages

Very special case of copy-on-writeVery special case of copy-on-write
 ZFOD = “Zero-fill on demand”

Many process pages are “blank”Many process pages are “blank”
 All of bss
 New heap pages
 New stack pages

Have one Have one system-widesystem-wide all-zero frame all-zero frame
 Everybody points to it
 Logically read-write, physically read-only
 Reads of zeros are free
 Writes cause page faults & cloning

15-410,F'1716

Memory-Mapped Files

Alternative interface to read(),write()Alternative interface to read(),write()
 mmap(addr, len, prot, flags, fd, offset)
 new memory region presents file contents
 write-back policy typically unspecified

 unless you msync()...

BenefitsBenefits
 Avoid serializing pointer-based data structures
 Reads and writes may be much cheaper

 Look, Ma, no syscalls!

15-410,F'1717

Memory-Mapped Files

ImplementationImplementation
 Memory region remembers mmap() parameters
 Page faults trigger read() calls
 Pages stored back via write() to file

Shared memoryShared memory
 Two processes mmap() “the same way”
 Point to same memory region

15-410,F'1718

Page Replacement/Page Eviction

Processes always want Processes always want moremore memory frames memory frames
 Explicit deallocation is rare
 Page faults are implicit allocations

System inevitably runs out of framesSystem inevitably runs out of frames

Solution outlineSolution outline
 Pick a frame, store contents to disk
 Transfer ownership to new process
 Service fault using this frame

15-410,F'1719

Pick a Frame

Two-level approachTwo-level approach
 Determine # frames each process “deserves”
 “Process” chooses which frame is least-valuable

 Most OS's: kernel actually does the choosing

System-wide approachSystem-wide approach
 Determine globally-least-useful frame

15-410,F'1720

Store Contents to Disk

Where does it belong?Where does it belong?
 Allocate backing store for each page

 What if we run out?

Must we Must we reallyreally store it? store it?
 Read-only code/data: no!

 Can re-fetch from executable
 Saves paging space & disk-write delay
 But file-system read() may be slower than paging-disk read

 Not modified since last page-in: no!
 Hardware typically provides “page-dirty” bit in PTE
 Cheap to “store” a page with dirty==0

15-410,F'1721

Page Eviction Policies

Don't try these at homeDon't try these at home
 FIFO
 Optimal
 LRU

PracticalPractical
 LRU approximation

Current ResearchCurrent Research
 ARC (Adaptive Replacement Cache)
 CAR (Clock with Adaptive Replacement)
 CART (CAR with Temporal Filtering)

15-410,F'1722

Page Eviction Policies

Don't try these at homeDon't try these at home
 FIFO
 Optimal
 LRU

PracticalPractical
 LRU approximation

Current ResearchCurrent Research
 ARC (Adaptive Replacement Cache)
 CAR (Clock with Adaptive Replacement)
 CART (CAR with Temporal Filtering)
 CARTHAGE (CART with Hilarious AppendaGE)

15-410,F'1723

FIFO Page Replacement

ConceptConcept
 Queue of all pages – named as (task id, virtual address)
 Page added to tail of queue when first given a frame
 Always evict oldest page (head of queue)

EvaluationEvaluation
 Fast to “pick a page”
 Stupid

 Will indeed evict old unused startup-code page
 But guaranteed to eventually evict process's favorite page

too!

15-410,F'1724

Optimal Page Replacement

ConceptConcept
 Evict whichever page will be referenced latest

 “Buy the most time” until next page fault

EvaluationEvaluation
 Requires perfect prediction of program execution
 Impossible to implement

So?So?
 Used as upper bound in simulation studies

15-410,F'1725

LRU Page Replacement

ConceptConcept
 Evict Least-Recently-Used page
 “Past performance may not predict future results”

 ...but it's an important hint!

EvaluationEvaluation
 Would probably be reasonably accurate
 LRU is computable without a fortune teller
 Bookkeeping very expensive

 (right?)

15-410,F'1726

LRU Page Replacement

ConceptConcept
 Evict Least-Recently-Used page
 “Past performance may not predict future results”

 ...but it's an important hint!

EvaluationEvaluation
 Would probably be reasonably accurate
 LRU is computable without a fortune teller
 Bookkeeping very expensive

 Hardware must sequence-number every page reference

» Evictor must scan every page's sequence number
 Or you can “just” do a doubly-linked-list operation per ref

15-410,F'1727

Approximating LRU

Hybrid hardware/software approachHybrid hardware/software approach
 1 reference bit per page table entry
 OS sets reference = 0 for all pages
 Hardware sets reference=1 when PTE is used in lookup
 OS periodically scans

 (reference == 1) ⇒ “recently used”

 Result:
 Hardware sloppily partitions memory into “recent” vs. “old”
 Software periodically samples, makes decisions

15-410,F'1728

Approximating LRU

““Second-chance” algorithmSecond-chance” algorithm
 Use stupid FIFO queue to choose victim candidate page
 reference == 0?

 not “recently” used, evict page, steal its frame

 reference == 1?
 “somewhat-recently used” - don't evict page this time
 append page to rear of queue (“second chance”)
 set reference = 0

» Process must use page again “soon” for it to be skipped

ApproximationApproximation
 Observe that queue is randomly sorted

 We are evicting not-recently-used, not least-recently-used

15-410,F'1729

Approximating LRU

““Clock” algorithmClock” algorithm
 Observe: “Page queue” requires linked list

 Extra memory traffic to update pointers

 Observe: Page queue's order is essentially random
 Doesn't add anything to accuracy

 Revision
 Don't have a queue of pages
 Just treat memory as a circular array

15-410,F'1730

Clock Algorithm

static int nextpage = 0;
boolean reference[NPAGES];

int choose_victim() {
 while (reference[nextpage]) {
 reference[nextpage] = false;
 nextpage = (nextpage+1) % NPAGES;
 }
 return(nextpage);
}

15-410,F'1731

“Page Buffering”

ProblemProblem
 Don't want to evict pages only after a fault needs a frame
 Must wait for disk write before launching disk read (slow!)

““Assume a blank page...”Assume a blank page...”
 Page fault handler can be much faster

““page-out daemon”page-out daemon”
 Scans system for dirty pages

 Write to disk
 Clear dirty bit
 Page can be instantly evicted later

 When to scan, how many to store? Indeed...

15-410,F'1732

Frame Allocation

How many frames should a process have?How many frames should a process have?

Minimum allocationMinimum allocation
 Examine worst-case instruction

 Can multi-byte instruction cross page boundary?
 Can memory parameter cross page boundary?
 How many memory parameters?
 Indirect pointers?

15-410,F'1733

“Fair” Frame Allocation

Equal allocationEqual allocation
 Every process gets same number of frames

 “Fair” - in a sense
 Probably wasteful

Proportional allocationProportional allocation
 Every process gets same percentage of residence

 (Everybody 83% resident, larger processes get more frames)
 “Fair” - in a different sense
 Probably the right approach

» Theoretically, encourages greediness

15-410,F'1734

Thrashing

ProblemProblem
 Process needs N frames...

 Repeatedly rendering image to video memory
 Must be able to have all “world data” resident 20x/second

 ...but OS provides N-1, N/2, etc.

ResultResult
 Every page OS evicts generates “immediate” fault
 More time spent paging than executing
 Paging disk constantly busy

 Denial of “paging service” to other processes

 Widespread unhappiness

15-410,F'1735

“Working-Set” Allocation Model

ApproachApproach
 Determine necessary # frames for each process

 “Working set” - size of frame set you need to get work done

 If unavailable, swap entire process out
 (later, swap some other process entirely out)

How to measure working set?How to measure working set?
 Periodically scan all reference bits of process's pages
 Combine multiple scans (see text)

EvaluationEvaluation
 Expensive
 Can we approximate it?

15-410,F'1736

Page-Fault Frequency Approach

ApproachApproach
 Recall, “thrashing” == “excessive” paging
 Adjust per-process frame quotas to balance fault rates

 System-wide “average page-fault rate” (10 faults/second)
 Process A fault rate “too high”: increase frame quota
 Process A fault rate “too low”: reduce frame quota

What if quota increase doesn't help?What if quota increase doesn't help?
 If giving you some more frames didn't help, maybe you

need a lot more frames than you have...
 Swap you out entirely for a while

15-410,F'1737

Program Optimizations

Is paging an “OS problem”?Is paging an “OS problem”?
 Can a programmer reduce working-set size?

Locality depends on data structuresLocality depends on data structures
 Arrays encourage sequential accesses

 Many references to same page
 Predictable access to next page

 Random pointer data structures scatter references

Compiler & linker can help tooCompiler & linker can help too
 Don't split a routine across two pages
 Place helper functions on same page as main routine

Effects can be Effects can be dramaticdramatic

15-410,F'1738

Summary

Speed hacksSpeed hacks

Page-replacement policiesPage-replacement policies
 The eviction problem
 Sample policies

 For real: LRU approximation with hardware support

 Page buffering
 Frame Allocation (process page quotas)

Definition & use ofDefinition & use of
 Dirty bit, reference bit

Virtual-memory usage optimizationsVirtual-memory usage optimizations

