
15-410, F’171

Executables
Oct. 9, 2017
Executables
Oct. 9, 2017

Some slides taken from 15-213 S'03 (Goldstein, Maggs).Some slides taken from 15-213 S'03 (Goldstein, Maggs).

Original slides authored by Randy Bryant and Dave O'Hallaron.Original slides authored by Randy Bryant and Dave O'Hallaron.

15-410
“Nobody reads these quotes anyway…”

Dave EckhardtDave Eckhardt

Dave O'HallaronDave O'Hallaron

15-410, F’172

Synchronization

Project 3 Checkpoint 1Project 3 Checkpoint 1
 In cluster (watch mail for coordinates)
 We will ask you to load and run a program released then

You need to You need to planplan how to get there how to get there
 Simple program loader
 Dummy VM (please write encapsulated bad code!!)
 Getting from kernel mode to user mode
 Getting from user mode to kernel mode
 Lots of faults

 Solving them will require “story telling”

» Don't forget about intel-isr.pdf and intel-sys.pdf

15-410, F’173

Pop QuizPop Quiz

Q0. What is “BSS”?Q0. What is “BSS”?

Q1. What does the Unix “ld” program do?Q1. What does the Unix “ld” program do?

Q2. What does “ld” stand for?Q2. What does “ld” stand for?

15-410, F’174

Outline

Where addresses come fromWhere addresses come from

Executable files vs. Memory ImagesExecutable files vs. Memory Images
 Conversion by “program loader”
 You will write one for exec() in Project 3

Object file linking (answer to Q2)Object file linking (answer to Q2)
 Loader bugs make programs execute half-right
 You will need to characterize what's broken

 (Not: “every time I call printf() I get a triple fault”)

 You will need to how the parts should fit together

15-410, F’175

Who emits addresses?Who emits addresses?

Program linking, program loadingProgram linking, program loading
 ... means getting bits in memory at the right addresses

Who Who usesuses those addresses? those addresses?
 (Where did that “wild access” come from?)

Code addresses: program counter (%cs:%eip)Code addresses: program counter (%cs:%eip)
 Straight-line code
 Loops, conditionals
 Procedure calls

Stack area: stack pointer (%ss:%esp, %ss:%ebp)Stack area: stack pointer (%ss:%esp, %ss:%ebp)

Data regions (data/bss/heap)Data regions (data/bss/heap)
 Most pointers in general purpose registers (%ds:%ebx)

15-410, F’176

Initialized how?Initialized how?

Program counterProgram counter
 Set to “entry point” by OS program loader

Stack pointerStack pointer
 Set to “top of stack” by OS program loader

RegistersRegisters
 How does my code know the address of thread_table[]?
 Some pointers are stored in the instruction stream

for (tp = thread_table,
 tp < &thread_table[n_threads], ++tp)

 Some pointers are stored in the data segment
 struct thread *thr_base = &thread_table[0];

 How do these all point to the right places?

15-410, F’177

Where does an int live?Where does an int live?

int k = 3;
int foo(void) {
 int shh = 99;
 return (k);
}

int a = 0;
int b = 12;
int bar (void) {
 return (a + b);
} ...

ret
leave
movl _k,%eaxcode 0

b = 12
k = 3data 4096

a = 0bss 8192

15-410, F’178

Loader: Image File ⇒ Memory ImageLoader: Image File ⇒ Memory Image

...
ret
leave
movl _k,%eaxcode 0

12
 3data 4096

0bss 8192

...
ret
leave
movl _k,%eaxcode 0

12
 3

data 4096

header

Image file has header (tells loader what to do)
Memory image has bss segment!

15-410, F’179

Programs are Multi-partPrograms are Multi-part

ModularityModularity
 Program can be written as a collection of smaller source files,

rather than one monolithic mass.
 Can build libraries of common functions (more on this later)

 e.g., Math library, standard C library

Efficiency (time)Efficiency (time)
 Change one source file, compile, and then relink.
 No need to recompile other source files.

““Link editor” combines objects into one image fileLink editor” combines objects into one image file
 Unix “link editor” called “ld”

15-410, F’1710

Linker Todo ListLinker Todo List

Merge object filesMerge object files
 Merges multiple relocatable (.o) object files into a single

executable object file that can loaded and executed by the
loader.

Resolve external referencesResolve external references
 External reference: reference to a symbol defined in another

object file.

Relocate symbolsRelocate symbols
 Relocates symbols from their relative locations in the .o files

to new absolute positions in the executable.
 Updates all references to these symbols to reflect their new

positions.
 What does this mean??

15-410, F’1711

Every .o uses same address spaceEvery .o uses same address space

code

data

bss

code

data

bss

15-410, F’1712

Combining .o's Changes AddressesCombining .o's Changes Addresses

code

data

bss

code

data

bss

15-410, F’1713

Relocating Symbols and Resolving
External References
Relocating Symbols and Resolving
External References

 Symbols are lexical entities that name functions and variables.
 Each symbol has a value (typically a memory address).
 Code consists of symbol definitions and references.
 References can be either local or external.

int e=7;

int main() {
 int r = a();
 exit(0);
}

m.c a.c
extern int e;

int *ep=&e;
int x=15;
int y;

int a() {
 return *ep+x+y;
}

Def of local
symbol e

Ref to external
symbol exit
(defined in
libc.so)

Ref to
external
symbol e

Def of
local
symbol
ep

Defs of
local
symbols
x and y

Refs of local
symbols ep,x,y

Def of
local
symbol a

Ref to external
symbol a

15-410, F’1714

Merging Relocatable Object Files
⇒ Executable Object File
Merging Relocatable Object Files
⇒ Executable Object File

main()
m.o

int *ep = &e

a()

a.o

int e = 7

headers

main()

a()

0system code

int *ep = &e

int e = 7

system data

more system code

int x = 15
int y

system data

int x = 15

Relocatable Object Files Executable Object File

.text

.text

.data

.text

.data

.text

.data

.bss .symtab
.debug

.data

uninitialized data .bss

system code

15-410, F’1715

Linker uses relocation informationLinker uses relocation information

Object file contains a “relocation table”Object file contains a “relocation table”
Each table entry specifies one “relocation field” in object

ExampleExample
 “Bytes 1024..1027 of foo.o refer to absolute address of _main”

 _main may be a file-local symbol or an external symbol

 If _main moves, all fields referring to it must be patched

Field propertiesField properties
Location

 offset, bit field size

Type
 relative, absolute

Reference
 symbol name (string)

15-410, F’1716

Executable File / Image FileExecutable File / Image File

Linked program consists of multiple “sections”Linked program consists of multiple “sections”
 Section properties

 Type
 Memory address

Common Executable File FormatsCommon Executable File Formats
 a.out - “assembler output” (primeval Unix format: 70's, 80's)
 Mach-O – Mach Object (used by MacOS X)
 ELF – Executable and Linking Format

15-410, F’1717

Executable File / Image FileExecutable File / Image File

Linked program consists of multiple “sections”Linked program consists of multiple “sections”
 Section properties

 Type
 Memory address

Common Executable File FormatsCommon Executable File Formats
 a.out - “assembler output” (primeval Unix format: 70's, 80's)
 Mach-O – Mach Object (used by MacOS X)
 ELF – Executable and Linking Format

 (includes “DWARF” - Debugging With Attribute Record Format)

15-410, F’1718

Executable and Linkable Format
(ELF)
Executable and Linkable Format
(ELF)
Standard binary format for object filesStandard binary format for object files

Derives from AT&T System V UnixDerives from AT&T System V Unix
 Later adopted by BSD Unix variants and Linux

One unified format for One unified format for
 Relocatable object files (.o)
 Executable object files
 Shared object files (.so)

Generic name: ELF binariesGeneric name: ELF binaries

Better support for shared libraries than old Better support for shared libraries than old a.outa.out
formats.formats.

15-410, F’1719

ELF Object File FormatELF Object File Format

ELF headerELF header
 Magic number, type (.o, exec, .so),

machine, byte ordering, etc.

Program header tableProgram header table
 Page size, virtual addresses memory

segments (sections), segment sizes.

.text.text section section
 Code

.rodata, .data.rodata, .data section section
 Initialized (static) data (ro = “read-only”)

.bss.bss section section
 Uninitialized (static) data
 “Block Started by Symbol”
 “Better Save Space”
 Has section header but occupies no space

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.txt

.rel.data

.debug

Section header table
(required for relocatables)

0

.rodata section

15-410, F’1720

ELF Object File Format (cont.)ELF Object File Format (cont.)

.symtab.symtab section section
 Symbol table
 Procedure and static variable names
 Section names and locations

.rel.text.rel.text section section
 Relocation info for .text section
 Addresses of instructions that will need to

be modified in the executable
 Instructions for modifying.

.rel.data.rel.data section section
 Relocation info for .data section
 Addresses of pointer data that will need to

be modified in the merged executable

.debug.debug section section
 Info for symbolic debugging (gcc -g)

0
ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.txt

.rel.data

.debug

Section header table
(required for relocatables)

.rodata section

15-410, F’1721

“Not Needed on Voyage”“Not Needed on Voyage”

Some sections not needed for executionSome sections not needed for execution
 Symbol table
 Relocation information
 Symbolic debugging information

These sections not loaded into memoryThese sections not loaded into memory

May be removed with “strip” commandMay be removed with “strip” command
 Or retained for future debugging

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

.rodata section

15-410, F’1722

Loading ELF BinariesLoading ELF Binaries

ELF header

Program header table
(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table
(required for relocatables)

0

.text segment
(r/o)

.data segment
(initialized r/w)

.bss segment
(uninitialized r/w)

Executable object file for
example program

Process image

0x08048494

init and shared lib
segments

0x080483e0

Virtual addr

0x0804a010

0x0804a3b0

.rodata section

.rodata segment
(r/o)

0x08049000

15-410, F’1723

Getting Help

Writing your first loader should be funWriting your first loader should be fun
 But some parts might be “fun” instead

A tool you can useA tool you can use
 gdb

% gdb 410user/progs/init
(gdb) x/i main
0x1000020 <main>: push %ebp
(gdb) x/x main
0x1000020 <main>: 0x83e58955

 Ok, now you have a cross-check!

Other tools which tell you where executable parts belongOther tools which tell you where executable parts belong
 nm -n
 objdump

15-410, F’1724

Summary

Where do addresses come from?Where do addresses come from?

Where does an int live?Where does an int live?

Image file vs. Memory imageImage file vs. Memory image

LinkerLinker
 What, why
 Relocation

ELF structureELF structure
 The pieces which need to be loaded into memory by

somebody
 Somebody whose name is a lot like yours...

