
1

15-410 Mid-Semester Review

Dave Eckhardt
Dave O'Hallaron

2

Synchronization

● First Project 3 checkpoint
– Monday, October 16th during class time

– Meet in Wean 5207
● Watch e-mail for your personal arrival time

Synchronization

● Exam study materials
– HW1 out, due Wednesday

● NOT AT MIDNIGHT

– Archive of old mid-term exams (course web site)

5

Synchronization

VM is not on the exam
– It could be, but it'll be more fun on the final

● Threading vs. this exam
– You are responsible for conceptual material

covered in class.

– Your thread library may not be perfect...

– ...but we expect you to solidly understand what
the thread-library primitives do and how to
correctly use them. This includes avoiding
standard “anti-patterns”!

6

Synchronization

● Exam will be closed-book
● Who is reading comp.risks?
● About today's review

– Mentioning key concepts

– No promise of exhaustive coverage

– Reading some of the textbook is advisable!

● Will attempt a 4-slide summary at end

7

Hardware

● Inside the box – bridges
● User registers and other registers
● Fairy tales about system calls
● Kinds of memory, system-wide picture

– User vs. kernel

– Code, data, stack

– Per-process kernel stack

● Device driver, interrupt vector, masking
interrupts

8

Hardware

● System clock
– “Time of day” clock (aka “calendar”)

– Countdown timer

9

Process

● Pseudo-machine (registers, memory, I/O)
● Life cycle: fork()/exec()

– specifying memory, registers, I/O, kernel state

– the non-magic of stack setup (argv[])
– the non-magic function that calls main()

● States: running, runnable, blocked, zombie
● Process cleanup: why, what

10

Thread

● Core concept: schedulable set of registers
– With access to some resources

● Address space, system-level objects
– (Mach terminology: “task”)

– Thread stack

● Why threads?
– Cheap context switch

– Cheap access to shared resources

– Responsiveness

– Multiprocessors

11

Thread types

● Internal (N:1)
– optional user-space library

– register save/restore (incl. stack swap)

● Features
– only one outstanding system call (without tricks)

– “cooperative” scheduling might not be
– no win on multiprocessors

12

Thread types

● Kernel threads (1:1)
– resources (memory, ...) shared & reference-

counted

– kernel manages: registers, k-stack, scheduling

● Features
– good on multiprocessors

– may be “heavyweight”

13

Thread types

● M:N
– M user threads share N kernel threads

● dedicated or shared

● Features
– Best of both worlds

– Or maybe worst of both worlds

14

Thread cancellation

● Asynchronous/immediate
– Don't try this at home

– How to garbage collect???

● Deferred
– Requires checking or cancellation points

15

Race conditions

● Lots of “++x vs. --x” examples using table
format

● “Race-condition party” algorithms
– e.g., Bakery

● The setuid shell script attack
– (as an example in a different arena)

● This is a core concept
– (not limited to one part of the course, or to the

course as a whole)

16

Wacky Memory, “Modern” Machines

● Memory writes may be re-ordered or
coalesced

● That's not a bug, it's a feature!
● You may generally assume old-fashioned

memory for this class

17

Atomic sequences

● “short”
● require non-interference
● typically nobody is interfering
● store->cash += 50;
● Encapsulate in “mutex” / “latch”

1. Which data items must be operated on as a unit?

2. Assign them a synchronization object

3. Code sequences using the data must go through
the object

18

Voluntary de-scheduling

● “Are we there yet?”
● We want somebody else to have our CPU
● Not-running is an OS service!
● Atomic:

– release state-guarding mutex

– suspend execution

● Encapsulate in “condition variable”

19

Critical Section Problem / Protocol

● Three goals
– Mutual exclusion

– Progress – choosing time must be bounded
– Bounded waiting – choosing cannot be

unboundedly unfair

● Two “historical example” solutions
– “Taking Turns When Necessary” algorithm (more

generally known as “Peterson's Algorithm”)

– Bakery algorithm

20

Mutex implementation

● Hardware flavors
– XCHG, Test&Set

– Load-linked, store-conditional
– i860 magic lock bit

– Basically isomorphic

● Lamport's algorithm (not on test)
● “Passing the buck” to the OS (or why not!)
● [Oddity not on mid-term: Kernel-assisted

instruction sequences]

21

Bounded waiting

● One approach discussed
● Are there others?
● How critical in real life?

– Why or why not?

– When?

22

Environment matters

● Spin-wait on a uniprocessor????
● How reasonable is your scheduler?

– Maybe approximate bounded waiting is
approximately free?

23

Condition variables

● Why we want them
● How to use them
● What's inside?
● The “atomic sleep” problem

24

Semaphores

● Concept
– Thread-safe integer

– wait()/P()
– signal()/V()

● Use
– Can be mutexes or condition variables

● 42 flavors
– Binary, non-blocking, counting/recursive

25

Monitor

● Concept
– Collection of procedures

– Block of shared state
– Compiler-provided synchronization code

● Condition variables (again)

26

Deadlock

● Definition
– Group of N processes

– Everybody waiting for somebody else in the
group

● Four requirements
● Process/Resource graphs
● Dining Philosophers example

27

Prevention

● “Four Ways To Forgiveness”
● One is used particularly frequently

– You should know it

– You should also not believe that is “the way to
solve deadlock”

28

Avoidance

● Keep system in “safe” states
– States with an “exit strategy”

● Assume some process will complete, release
resources

● Make sure this enables another to finish, etc.
● Banker's Algorithm

29

Detection

● Don't be paranoid (but don't be oblivious)
● Scan for cycles

– When?

– What to do when you find one?

30

Starvation

● Always a danger
– Understand vs. deadlock

● Solutions probably application-specific

31

Context switch

● yield() by hand (user-space threads)
– No magic!

● yield() in the kernel
– Built on the magic process_switch()
– Inside the non-magic process_switch()

● Scheduling
● Saving
● Restoring

● Clock interrupts, I/O completion

32

Addresses

● Where addresses come from
– Program counter

– Stack pointer
– Random registers

● Parts / areas / segments / regions of a
process/program

33

Summary – What is an OS?

● Parts of a machine
– Memory, registers

– Interrupts/traps and their handlers

● Parts of a process (incl. thread)
– Memory, registers, stack

– System calls (stubs, handlers)

[Next slide: covered, but not coded, so not on[Next slide: covered, but not coded, so not on
test]test]

34

Summary – What is an OS?

● How to assemble machine parts into process
parts
– How to make virtual memory from physicalHow to make virtual memory from physical

memorymemory

– How to make a process from memory andHow to make a process from memory and
registersregisters

● And an executable fileAnd an executable file

● How to share a machine among processes
– (and how to share a process among threads)

– Context switchContext switch/yield

35

Summary – Synchronization

● Basic RAM-based algorithms
– Be able to read one and think about it

● Mutex, condition variable
– When to use each one, and why
– What's inside each one, and why

36

Summary – Deadlock

● A fundamental OS problem
– Affects every OS

– No “silver bullet”

● What you need for deadlock
● Prevention, Avoidance, Detection/Recovery

– What each is, how they relate

● Starvation

37

Preparation

● Homework 1
● Archive of old mid-terms

– Write down answers!

● Don't forget to get some sleep

