
15-410, F'171

Virtual Memory #1
Oct. 2, 2017

Dave EckhardtDave Eckhardt

Dave O'HallaronDave O'Hallaron

L15_VM1

15-410
“...We are Computer Scientists!...”

15-410, F'172

Synchronization

Who has read some test code?Who has read some test code?
 How about the “thread group” library?
 If you haven't read a lot of mutex/cvar code before, you

have some in hand!

Code drop is possible soonCode drop is possible soon
 Remember to “make update” when prompted

15-410, F'173

Outline

TextText
 Reminder: reading list on class “Schedule” page

““213 review material”213 review material”
 Linking, fragmentation

The Problem: logical vs. physicalThe Problem: logical vs. physical

Contiguous memory mappingContiguous memory mapping

FragmentationFragmentation

PagingPaging
 Type theory
 A sparse map

15-410, F'174

Logical vs. Physical

““It's all about address spaces”It's all about address spaces”
 Generally a complex issue

 IPv4 ⇒ IPv6 is mainly about address space exhaustion

213 review (?)213 review (?)
 Combining .o's changes addresses
 But what about two programs?

15-410, F'175

Every .o uses the same address space

code

data

bss

code

data

bss

15-410, F'176

Linker combines .o's, changes addresses

code

data

bss

code

data

bss

15-410, F'177

What About Two Programs?

code

data

bss

00010000

00010200

00010300

stack FFFFF000

code

data

bss

00010000

00010100

00010300

stack FFFFE000

15-410, F'178

Logical vs. Physical Addresses

Logical addressLogical address
 Each program has its own address space ...

 fetch: address ⇒ data

 store: address, data ⇒ unit

 ...as envisioned by programmer, compiler, linker

Physical addressPhysical address
 Where your program ends up in memory
 They can't all be loaded at 0x10000!

15-410, F'179

Reconciling Logical, Physical

Programs could Programs could take turnstake turns in memory in memory
 Requires swapping programs out to disk
 Very slow

Could run programs at addresses other than linkedCould run programs at addresses other than linked
 Requires using linker to “relocate one last time” at launch
 Done by some old mainframe OSs
 Slow, complex, or both

We are computer scientists!We are computer scientists!

15-410, F'1710

Reconciling Logical, Physical

Programs could Programs could take turnstake turns in memory in memory
 Requires swapping programs out to disk
 Very slow

Could run programs at addresses other than linkedCould run programs at addresses other than linked
 Requires using linker to “relocate one last time” at launch
 Done by some old mainframe OSs
 Slow, complex, or both

We are computer scientists!We are computer scientists!
 Insert a level of indirection

15-410, F'1711

Reconciling Logical, Physical

Programs could Programs could take turnstake turns in memory in memory
 Requires swapping programs out to disk
 Very slow

Could run programs at addresses other than linkedCould run programs at addresses other than linked
 Requires using linker to “relocate one last time” at launch
 Done by some old mainframe OSs
 Slow, complex, or both

We are computer scientists!We are computer scientists!
 Insert a level of indirection

 Well, get the ECE folks to do it for us

15-410, F'1712

“Type Theory”

Physical memory behaviorPhysical memory behavior
 fetch: address ⇒ data

 store: address, data ⇒ unit

Process thinks of memory as...Process thinks of memory as...
 fetch: address ⇒ data

 store: address, data ⇒ unit

15-410, F'1713

“Type Theory”

Physical memory behaviorPhysical memory behavior
 fetch: address ⇒ data

 store: address, data ⇒ unit

Process thinks of memory as...Process thinks of memory as...
 fetch: address ⇒ data

 store: address, data ⇒ unit

Goal: each process has “its own memory”Goal: each process has “its own memory”
 process-id ⇒ fetch: (address ⇒ data)

 process-id ⇒ store: (address, data ⇒ unit)

What What reallyreally happens happens
 process-id ⇒ map: (virtual-address ⇒ physical-address)

 Machine does “fetch o map” and “store o map”

15-410, F'1714

Simple Mapping Functions

P1P1
If V > 8191 ERROR

Else P = 1000 + V

P2P2
If V > 16383 ERROR

Else P = 9192 + V

Address space Address space ≡≡
 Base address
 Limit

Process 3

Process 2

Process 1

OS Kernel

0

16383

9192

25575

0
8191

1000
9191

0
999

0
999

Virtual Physical

15-410, F'1715

Contiguous Memory Mapping

Processor contains two Processor contains two control registerscontrol registers
 Memory base
 Memory limit

Each memory access checksEach memory access checks
If V < limit
 P = base + V;
Else
 ERROR /* what do we call this error? */

During context switch...During context switch...
 Save/load user-visible registers
 Also load process's base, limit registers

15-410, F'1716

Problems with Contiguous Allocation

1. How do we 1. How do we growgrow a process? a process?
 Must increase “limit” value
 Cannot expand into another process's memory!
 Must move entire address spaces around

 Very expensive

2. Fragmentation2. Fragmentation
 New processes may not fit into unused memory “holes”

3. Partial memory residence3. Partial memory residence
 Must entire program be in memory at same time?

15-410, F'1717

Can We Run Process 4?

Process exit createsProcess exit creates
“holes”“holes”

New processes may beNew processes may be
too largetoo large

May require moving entireMay require moving entire
address spacesaddress spaces

Process 3

Process 4

OS Kernel

Process 1

15-410, F'1718

Term: “External Fragmentation”

Free memory is smallFree memory is small
chunkschunks

Doesn't fit large objectsDoesn't fit large objects

Can “disable” lots ofCan “disable” lots of
memorymemory

Can fixCan fix
 Costly “compaction”

 aka “Stop & copy”

Process 4

Process 1

OS Kernel

Process 2

15-410, F'1719

Term: “Internal Fragmentation”

Allocators often round upAllocators often round up
 8K boundary (some

power of 2!)

Some memory is wastedSome memory is wasted
insideinside each segment each segment

Can't fix via compactionCan't fix via compaction

Effects often non-fatalEffects often non-fatal

Process 3

Process 4

Process 1

OS Kernel

0

8192

1100

9292

15-410, F'1720

Swapping

Multiple user processesMultiple user processes
 Sum of memory demands > system memory
 Goal: Allow each process 100% of system memory

Take turnsTake turns
 Temporarily evict process(es) to disk

 Not runnable
 Blocked on implicit I/O request (e.g., “swapread”)

 “Swap daemon” shuffles process in & out
 Can take seconds per process

 Modern analogue: laptop suspend-to-disk

 Maybe we need a better plan?

15-410, F'1721

Contiguous Allocation ⇒ Paging

Solves multiple problemsSolves multiple problems
 Process growth problem
 Fragmentation compaction problem
 Long delay to swap a whole process

Approach: divide memory more finelyApproach: divide memory more finely
 Page = small region of virtual memory (½K, 4K, 8K, ...)
 Frame = small region of physical memory
 [I will get this wrong, feel free to correct me]

Key idea!!!Key idea!!!
 Any page can map to (occupy) any frame

15-410, F'1722

Per-process Page Mapping

P0 code 0

OS Kernel

P1 code 0
P0 data 0
P1 data 0

P1 stack 0

P0 stack 0
P1 data 1
P0 code 1

P0 code 0

P0 code 1
P0 data 0

P0 stack 0

P1 code 0

P1 data 0
P1 data 1

P1 stack 0

15-410, F'1723

Problems Solved by Paging

Process growth problem?Process growth problem?
 Any process can use any free frame for any purpose

Fragmentation compaction problem?Fragmentation compaction problem?
 Process doesn't need to be contiguous, so don't compact

Long delay to swap a whole process?Long delay to swap a whole process?
 Swap part of the process instead!

15-410, F'1724

Partial Residence

P0 code 0

OS Kernel

[free]
P0 data 0
P1 data 0

P1 stack 0

P0 stack 0
P1 data 1

[free]

P0 code 0

P0 code 1
P0 data 0

P0 stack 0

P1 code 0

P1 data 0
P1 data 1

P1 stack 0

15-410, F'1725

Must Evolve Data Structure Too

Contiguous allocationContiguous allocation
 Each process was described by (base,limit)

PagingPaging
 Each page described by (base,limit)?

 Pages typically one size for whole system

 Ok, each page described by (base address)

 Arbitrary page ⇒ frame mapping requires some work
 Abstract data structure: “map”
 Implemented as...

15-410, F'1726

Data Structure Evolution

Contiguous allocationContiguous allocation
 Each process previously described by (base,limit)

PagingPaging
 Each page described by (base,limit)?

 Pages typically one size for whole system

 Ok, each page described by (base address)

 Arbitrary page ⇒ frame mapping requires some work
 Abstract data structure: “map”
 Implemented as...

» Linked list?

» Array?

» Hash table?

» Skip list?

» Splay tree?????

15-410, F'1727

“Page Table” Options

Linked listLinked list
 O(n), so V⇒ P time gets longer for large addresses!

ArrayArray
 Constant time access
 Requires (large) contiguous memory for table

Hash tableHash table
 Vaguely-constant-time access
 Not really bounded though

Splay treeSplay tree
 Excellent amortized expected time
 Lots of memory reads & writes possible for one mapping
 Not yet demonstrated in hardware

15-410, F'1728

“Page Table”: Array Approach

Page

....
f29
f34
....

Frame

Page table array

Page 3
Page 2
Page 1
Page 0

15-410, F'1729

Paging – Address Mapping

Logical Address

Page Offset

 1. 4K page size ⇒ 12 bits

 2. 32 - 12 ⇒ 20 bits of page #

15-410, F'1730

Paging – Address Mapping

Logical Address

Page Offset

....
f29
f34
....

Frame

Page table

15-410, F'1731

Paging – Address Mapping

Logical Address

Page Offset

....
f29
f34
....

Frame Offset

Copy

Page table

15-410, F'1732

Paging – Address Mapping

Logical Address

Page Offset

....
f29
f34
....

Frame Offset

Page table
Physical Address

15-410, F'1733

Paging – Address Mapping

User viewUser view
 Memory is a linear array

OS viewOS view
 Each process requires N frames, located anywhere

Fragmentation?Fragmentation?
 Zero external fragmentation
 Internal fragmentation: average ½ page per region

15-410, F'1734

Bookkeeping

One “page table” for each processOne “page table” for each process

One global “frame table”One global “frame table”
 Manages free frames
 (Typically) remembers who owns each frame

Context switchContext switch
 Must “activate” switched-to process's page table

15-410, F'1735

Hardware Techniques

Small number of pages?Small number of pages?
 Page “table” can be a few registers
 PDP-11: 64k address space

 8 “pages” of 8k each – 8 registers

Typical caseTypical case
 Large page tables, live in memory

 Processor has “Page Table Base Register” (names vary)
 Set during context switch

15-410, F'1736

Double trouble?

Program requests memory accessProgram requests memory access
 MOVL (%ESI),%EAX

Processor makes Processor makes twotwo memory accesses! memory accesses!
 Splits address in %esi into page number, intra-page offset
 Adds page number to page table base register
 Fetches page table entry (PTE) from memory
 Concatenates frame address with intra-page offset
 Fetches program's data from memory into %eax

Solution: “TLB”Solution: “TLB”
 Not covered today

15-410, F'1737

Page Table Entry Mechanics

PTE conceptual jobPTE conceptual job
 Specify a frame number

15-410, F'1738

Page Table Entry Mechanics

PTE conceptual jobPTE conceptual job
 Specify a frame number

PTE flagsPTE flags
 Valid bit

 Not-set means access should generate an exception

 Protection
 Read/Write/Execute bits

 Reference bit, “dirty” bit
 Set if page was read/written “recently”
 Used when paging to disk (later lecture)

 Specified by OS for each page/frame
 Inspected/updated by hardware

15-410, F'1739

Page Table Structure

ProblemProblem
 Assume 4 KByte pages, 4-Byte PTEs
 Ratio: 1024:1

 4 GByte virtual address (32 bits) ⇒ _______ page table

15-410, F'1740

Page Table Structure

ProblemProblem
 Assume 4 KByte pages, 4-Byte PTEs
 Ratio: 1024:1

 4 GByte virtual address (32 bits) ⇒ 4 MByte page table

15-410, F'1741

Page Table Structure

ProblemProblem
 Assume 4 KByte pages, 4-Byte PTEs
 Ratio: 1024:1

 4 GByte virtual address (32 bits) ⇒ 4 MByte page table
 For each process!

15-410, F'1742

Page Table Structure

ProblemProblem
 Assume 4 KByte pages, 4-Byte PTEs
 Ratio: 1024:1

 4 GByte virtual address (32 bits) ⇒ 4 MByte page table
 For each process!

One Approach: Page Table Length Register (PTLR)One Approach: Page Table Length Register (PTLR)
 (names vary)
 Many programs don't use entire virtual space
 Restrict a process to use entries 0...N of page table
 On-chip register detects out-of-bounds reference (>N)
 Allows small PTs for small processes

 (as long as stack isn't far from data)

15-410, F'1743

Page Table Structure

Key observationKey observation
 Each process page table is a sparse mapping
 Many pages are not backed by frames

 Address space is sparsely used

» Enormous “hole” between bottom of stack, top of heap

» Often occupies 99% of address space!
 Some pages are on disk instead of in memory

15-410, F'1744

Page Table Structure

Key observationKey observation
 Each process page table is a sparse mapping
 Many pages are not backed by frames

 Address space is sparsely used

» Enormous “hole” between bottom of stack, top of heap

» Often occupies 99% of address space!
 Some pages are on disk instead of in memory

Refining our observationRefining our observation
 Page tables are not randomly sparse

 Occupied by sequential memory regions
 Text, rodata, data+bss, stack

 “Sparse list of dense lists”

15-410, F'1745

Page Table Structure

How to map “sparse list of dense lists”?How to map “sparse list of dense lists”?

We are computer scientists!We are computer scientists!
 ...?

15-410, F'1746

Page Table Structure

How to map “sparse list of dense lists”?How to map “sparse list of dense lists”?

We are computer scientists!We are computer scientists!
 Insert a level of indirection

 Well, get the ECE folks to do it for us

Multi-level page tableMulti-level page table
 “Page directory” maps large chunks of address space to...
 ...Page tables, which map pages to frames
 Conceptually the same mapping as last time

 But the implementation is a two-level tree, not a single step

15-410, F'1747

Multi-level page table

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08
f07
....

Page
Directory

15-410, F'1748

Multi-level page table

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08
f07
....

Page
Directory

15-410, F'1749

Multi-level page table

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

⇒f07⇒
....

Page
Directory

15-410, F'1750

Multi-level page table

P1 Offset

Page
Tables

....
f99
f87
....

P2
f08

⇒f07⇒
....

Page
Directory

....
f29
f34
f25

15-410, F'1751

Multi-level page table

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2

15-410, F'1752

Multi-level page table

P1 Offset

....
f29
f34
f25

f34

Page
Tables

....
f99
f87
....

P2

15-410, F'1753

Multi-level page table

P1 Offset

....
f29
f34
f25

f34 Offset

Page
Tables

....
f99
f87
....

P2

15-410, F'1754

Sparse Mapping?

Assume 4 KByte pages, 4-byte PTEsAssume 4 KByte pages, 4-byte PTEs
 Ratio: 1024:1

 4 GByte virtual address (32 bits) ⇒ 4 MByte page table

Now assume page Now assume page directorydirectory with 4-byte P with 4-byte PDDEsEs
 4-megabyte page table becomes 1024 4K page tables
 Plus one 1024-entry page directory to point to them
 Result:

15-410, F'1755

Sparse Mapping?

Assume 4 KByte pages, 4-byte PTEsAssume 4 KByte pages, 4-byte PTEs
 Ratio: 1024:1

 4 GByte virtual address (32 bits) ⇒ 4 MByte page table

Now assume page Now assume page directorydirectory with 4-byte P with 4-byte PDDEsEs
 4-megabyte page table becomes 1024 4K page tables
 Plus one 1024-entry page directory to point to them
 Result: 4 Mbyte + 4Kbyte

15-410, F'1756

Sparse Mapping?

Assume 4 KByte pages, 4-byte PTEsAssume 4 KByte pages, 4-byte PTEs
 Ratio: 1024:1

 4 GByte virtual address (32 bits) ⇒ 4 MByte page table

Now assume page Now assume page directorydirectory with 4-byte P with 4-byte PDDEsEs
 4-megabyte page table becomes 1024 4K page tables
 Plus one 1024-entry page directory to point to them
 Result: 4 Mbyte + 4Kbyte (this is better??)

15-410, F'1757

Sparse Mapping?

Assume 4 KByte pages, 4-byte PTEsAssume 4 KByte pages, 4-byte PTEs
 Ratio: 1024:1

 4 GByte virtual address (32 bits) ⇒ 4 MByte page table

Now assume page Now assume page directorydirectory with 4-byte P with 4-byte PDDEsEs
 4-megabyte page table becomes 1024 4K page tables
 Plus one 1024-entry page directory to point to them
 Result: 4 Mbyte + 4Kbyte (this is better??)

SparseSparse address space... address space...
 ...means most page tables contribute nothing to mapping...
 ...most page tables would contain only “no frame” entries...
 ...replace those PT's with “null pointer” in page directory.
 Result: empty 4GB address space specified by 4KB directory

15-410, F'1758

Sparse Address Space?

Address space mostly “blank”Address space mostly “blank”
 Reads & writes should fail

““Compress” out “the middle”Compress” out “the middle”
 Sparse address space should

use a small mapping structure
 Fully-occupied address space

can justify a larger mapping
structure

stack
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
data
code

15-410, F'1759

Sparse Mapping!

““Sparse” page directorySparse” page directory
 Pointers to non-empty PT's
 “Null” instead of empty PT

Common caseCommon case
 Need 2 or 3 page tables

 One or two map code & data
 One maps stack

 Page directory has 1024 slots
 2-3 point to PT's
 Remainder are “not present”

ResultResult
 2-3 PT's, 1 PD
 Map entire address space with

12-16Kbyte, not 4Mbyte

-no-
-no-
f11
f56

f23
-no-
-no-
-no- f77

-no-
-no-
 f55

stack
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
data
code

15-410, F'1760

Segmentation

Physical memory is (mostly) linearPhysical memory is (mostly) linear

Is virtual memory linear?Is virtual memory linear?
 Typically a set of “regions”

 “Module” = code region + data region
 Region per stack
 Heap region

Why do regions matter?Why do regions matter?
 Natural protection boundary
 Natural sharing boundary

15-410, F'1761

Segmentation: Mapping

Seg # Offset

<=

Linear Address
Limit Base

+

%CS:%EIP

15-410, F'1762

Segmentation + Paging

80386 (does it 80386 (does it allall!)!)
 Processor address directed to one of six segments

 CS: Code Segment, DS: Data Segment
 32-bit offset within a segment -- CS:EIP

 Descriptor table maps selector to segment descriptor
 Offset fed to segment descriptor, generates linear address
 Linear address fed through page directory, page table
 See textbook!

15-410, F'1763

x86 Type Theory

Instruction Instruction ⇒⇒ segment selector segment selector
 [PUSHL implicitly specifies selector in %SS]

Process Process ⇒⇒ (selector (selector ⇒⇒ (base,limit)) (base,limit))
 [Global,Local Descriptor Tables]

Segment, within-segment address Segment, within-segment address ⇒⇒ “linear address” “linear address”
 CS:EIP means “EIP + base of code segment”

Process Process ⇒⇒ (linear address high (linear address high ⇒⇒ page table) page table)
 [Page Directory Base Register, page directory indexing]

Page Table: linear address middle Page Table: linear address middle ⇒⇒ frame address frame address

Memory: frame address + offset Memory: frame address + offset ⇒⇒

15-410, F'1764

Summary

Processes emit virtual addressesProcesses emit virtual addresses
 segment-based or linear

A magic process maps virtual to physicalA magic process maps virtual to physical

No, it's No, it's notnot magic magic
 Address validity verified
 Permissions checked
 Mapping may fail (trap handler)

Data structures determined by access patternsData structures determined by access patterns
 Most address spaces are sparsely allocated

15-410, F'1765

Quote

Any problem in Computer Science can be solved by an
extra level of indirection.

–Roger Needham

