
15-410, F'171

The Process
Sep. 6, 2017

Dave EckhardtDave Eckhardt

Dave O'HallaronDave O'Hallaron

L04_Process

15-410
“Luckily the stack is a simple data structure.”

15-410, F'172

Synchronization

Project 0 due tonightProject 0 due tonight
 11 students have already turned something in

 Turning something in early is a good idea
 Please see hand-in instructions on P0 web page

P2/P3/P4 partnersP2/P3/P4 partners
 7 groups have signed up (to some extent)

» BOTH PARTNERS must register
 Already know who your partner is?

 Please register now
 It makes it easier for others to partner
 It will stem the tide of annoying reminder e-mail

15-410, F'173

Synchronization

Reminders on collaborationReminders on collaboration
 Project 1 will be individual
 Talking about code is ok
 Possessing the code of another is not ok
 Different classes have different policies
 We expect you to read and follow the policies of this class

 (As found in the syllabus, which you are required to read)
 If something is unclear, please mail us

15-410, F'174

Synchronization

What is source code “for”?What is source code “for”?
 What is done with it?

15-410, F'175

Synchronization

The purpose of code is for The purpose of code is for people to readpeople to read
 By a reviewer / security auditor
 By your group
 By your manager
 By your successor
 By you six months later (6 hours later if no sleep)

Oh, yeah, the compiler reads it tooOh, yeah, the compiler reads it too

15-410, F'176

Synchronization

Anybody reading comp.risks?Anybody reading comp.risks?

This lectureThis lecture
 OSC: Chapter 3, but not exactly!

 We are skipping 3.5 and 3.6, including the terrifying “POSIX
Shared Memory”

 OS:P+P: Sections 3.1-3.3, but not exactly

15-410, F'177

Outline

Process as pseudo-machineProcess as pseudo-machine
 (that's all there is)

Process life cycleProcess life cycle

Process kernel statesProcess kernel states

Process kernel stateProcess kernel state

P1/P3 memory layoutP1/P3 memory layout
 (just a teaser for now)

15-410, F'178

A Computer

Stack

Program

Registers

Keyboard

Screen

Timer

15-410, F'179

A Process

Stack

Code
Data
Heap

Registers

stdin

stdout

timer

15-410, F'1710

Process life cycle

Life cycleLife cycle
 Birth

 (or, well, fission)
 School
 Work
 Death

NomenclatureNomenclature
 courtesy of The Godfathers [1988]

15-410, F'1711

Birth

Where do new processes come from?Where do new processes come from?
 (Not: under a cabbage leaf, by stork, ...)

What do we need?What do we need?
 Memory contents

 Text, data, stack
 CPU register contents (N of them)
 “I/O ports”

 File descriptors, e.g., stdin/stdout/stderr
 Hidden “stuff”

 timer state, current directory, umask

15-410, F'1712

Birth

Intimidating?Intimidating?

How to specify all of that stuff?How to specify all of that stuff?
 What is your {name,quest,favorite_color}?

Gee, we already have Gee, we already have oneone process we like... process we like...
 Maybe we could use its settings to make a new one...
 Birth via “cloning”

15-410, F'1713

Birth – fork() - 1

““fork” - Original Unix process creation system callfork” - Original Unix process creation system call

MemoryMemory
 Copy all of it
 Later lecture: VM tricks may make copy cheaper

RegistersRegisters
 Copy all of them

 All but one: parent learns child's process ID, child gets 0

15-410, F'1714

Birth – fork() - 2

File descriptorsFile descriptors
 Copy all of them
 Can't copy the files!
 Copy references to open-file state

Hidden stuffHidden stuff
 Do whatever is "obvious"

ResultResult
 Original, “parent”, process
 Fully-specified “child” process – despite 0 parameters to

fork()

15-410, F'1715

Now what?

Two copies of the same process is Two copies of the same process is boringboring

Transplant surgery!Transplant surgery!
 Implant new memory!

 New program text
 Implant new registers!

 Old ones don't point well into the new memory
 Keep (most) file descriptors

 Good for cooperation/delegation
 Hidden state?

 Do what's “obvious”

15-410, F'1716

Original Process

Stack

/bin/sh
Data
Heap

Registers

stdin

stdout

timer t=4

15-410, F'1717

Toss Heap, Data

Stack

/bin/sh

Registers

stdin

stdout

timer t=4

15-410, F'1718

Load New Code, Data From File

Stack

/u/b/gcc
Data

Registers

stdin

stdout

timer t=4

15-410, F'1719

Reset Stack, Heap

Stack

/u/b/gcc
Data

Registers

stdin

stdout

timer t=4[Heap]

15-410, F'1720

Fix “Stuff”

Stack

/u/b/gcc
Data

Registers

stdin

stdout

timer off[Heap]

15-410, F'1721

Initialize Registers

Stack

/u/b/gcc
Data

Registers

stdin

stdout

timer off[Heap]

15-410, F'1722

Begin Execution

Stack

/u/b/gcc
Data

Registers

stdin

stdout

timer offHeap

15-410, F'1723

What's The Implant Procedure
Called?

int execve(

 char *path,

 char *argv[],

 char *envp[])

15-410, F'1724

Birth - other ways

There is another wayThere is another way
 Well, two

spawn()spawn()
 Carefully specify all features of new process

 Complicated
 Win: don't need to copy stuff you will immediately toss

Plan 9 rfork() / Linux clone()Plan 9 rfork() / Linux clone()
 Build new process from old one
 Specify which things get shared vs. copied

 “Copy memory, share files, copy environment, share ...”

15-410, F'1725

School

Old process calledOld process called

execve(

char *path,

char *argv[],

char *envp[]);

Result isResult is

main(int argc,
 char *argv[],
 char *envp[])
{
 ...
}

15-410, F'1726

School

How does the magic work?How does the magic work?
 15-410 motto: No magic

Kernel process setup: we saw...Kernel process setup: we saw...
 Toss old data memory
 Toss old stack memory
 Load executable file

Also...Also...

15-410, F'1727

The Stack!

Kernel builds new stack for the processKernel builds new stack for the process
 Transfers argv[] and envp[] to top of new stack
 Hand-crafts stack frame for ~~main()
 Sets registers

 Stack pointer (to top frame)
 Program counter (to start of ~~main())

15-410, F'1728

Work

Process statesProcess states
 Running

 User mode or kernel mode
 Blocked

 Awaiting some event

» I/O completion, exit of another process, message, ...

» Maybe sleeping for a fixed period of time
 Scheduler: “do not run”
 Q: User mode, kernel mode, both, neither?

 Runnable
 Q: User mode, kernel mode, both, neither?

» Be sure to understand this

15-410, F'1729

Work

Other process statesOther process states
 Forking

 Obsolete, once used for special treatment
 Zombie

 Process has called exit(), parent hasn't noticed yet

““Exercise for the reader”Exercise for the reader”
 Draw the state transition diagram

15-410, F'1730

Death

VoluntaryVoluntary

 void exit(int reason);

Hardware exceptionHardware exception
 SIGSEGV - no memory there for you!

Software exceptionSoftware exception
 SIGXCPU – used "too much" CPU time

15-410, F'1731

Death

System call - kill(pid, sig);System call - kill(pid, sig);
 “Deliver sig to process pid”

 (negative values of pid have “interesting” behaviors)

 Keyboard ^C ⇒ equivalent of

 kill(getpid(), SIGINT);
 Start/stop logging

 kill(daemon_pid, SIGUSR1);
 % kill -USR1 33
 % kill -USR2 33
 This is a “non-kill” use of kill()

 Any other key uses of kill()?

15-410, F'1732

Death

System call - kill(pid, sig);System call - kill(pid, sig);
 “Deliver sig to process pid”

 (negative values of pid have “interesting” behaviors)

 Keyboard ^C ⇒ kill(getpid(), SIGINT);
 Start/stop logging - kill -USR1 33
 “Lost in Space”!!

 kill(Will_Robinson, SIGDANGER);

15-410, F'1733

Death

System call - kill(pid, sig);System call - kill(pid, sig);
 “Deliver sig to process pid”

 (negative values of pid have “interesting” behaviors)

 Keyboard ^C ⇒ kill(getpid(), SIGINT);
 Start/stop logging - kill -USR1 33
 “Lost in Space”!!

 kill(Will_Robinson, SIGDANGER);
 I apologize to IBM for lampooning their serious signal

15-410, F'1734

Death

System call - kill(pid, sig);System call - kill(pid, sig);
 “Deliver sig to process pid”

 (negative values of pid have “interesting” behaviors)

 Keyboard ^C ⇒ kill(getpid(), SIGINT);
 Start/stop logging - kill -USR1 33
 “Lost in Space”!!

 kill(Will_Robinson, SIGDANGER);
 I apologize to IBM for lampooning their serious signal

» No, I apologize for that apology...

15-410, F'1735

Process cleanup

Resource releaseResource release
 Open files: close() each

 TCP: 2 minutes (or more)
 Solaris disk offline - forever (“None shall pass!”)

 Memory: release

AccountingAccounting
 Record resource usage in a magic file

Gone?Gone?

15-410, F'1736

“All You Zombies...”

Zombie processZombie process
 Process state reduced to exit code
 Waits around until parent calls wait()

 Exit code copied to parent's memory
 PCB deleted from kernel

15-410, F'1737

Kernel process state

The dreaded "PCB"The dreaded "PCB"
 (polychlorinated biphenol?)

15-410, F'1738

Kernel process state

The dreaded "PCB"The dreaded "PCB"
 (polychlorinated biphenol?)

Process Control BlockProcess Control Block
 “Everything without a user-visible memory address”

 Kernel management information
 Scheduler state
 The “stuff”

15-410, F'1739

Sample PCB contents

Pointer to CPU register save areaPointer to CPU register save area

Process number, parent process numberProcess number, parent process number

Countdown timer valueCountdown timer value

Memory segment infoMemory segment info
 User memory segment list
 Kernel stack reference

Scheduler infoScheduler info
 linked list slot, priority, “sleep channel”

15-410, F'1740

15-410 Virtual Memory Layout

Stack

Program

k-stack
k-stack

k-stack
k-stack

Kernel Data

Kernel Program

Stack

Program

Stack

Program

Stack

Program

4080 MB

16 MB

15-410, F'1741

15-410 Physical Memory Layout

Kernel Memory

User Memory

16 MB

240 MB

15-410, F'1742

Ready to Implement All This?

Not so complicated...Not so complicated...
 getpid()
 fork()
 exec()
 wait()
 exit()

What could possibly go wrong?What could possibly go wrong?

15-410, F'1743

Summary

Parts of a ProcessParts of a Process
 Physical – Memory pages, registers, I/O devices
 Virtual – Memory regions, registers, I/O “ports”

Birth, School, Work, DeathBirth, School, Work, Death

““Big Picture” of system memory – both of themBig Picture” of system memory – both of them
 (Numbers & arrangement are 15-410–specific)

