15-410

“Luckily the stack is a simple data structure.”

The Process
Sep. 6, 2017

Dave Eckhardt
Dave O'Hallaron

L04 Process 15-410, F'17

Synchronization

Project 0 due tonight

= 11 students have already turned something in
= Turning something in early is a good idea
= Please see hand-in instructions on PO web page

P2/P3/P4 partners

= 7 groups have signed up (to some extent)
» BOTH PARTNERS must register
= Already know who your partner is?
= Please register now
= It makes it easier for others to partner
= [t will stem the tide of annoying reminder e-mail

15-410, F'17

Synchronization

Reminders on collaboration

= Project 1 will be individual

Talking about code is ok

Possessing the code of another is not ok
Different classes have different policies

We expect you to read and follow the policies of this class
= (As found in the syllabus, which you are required to read)
= If something is unclear, please mail us

15-410, F'17

Synchronization

What is source code “for’?
= What is done with it?

15-410, F'17

Synchronization

The purpose of code is for people to read

By a reviewer / security auditor

By your group

By your manager

By your successor

By you six months later (6 hours later if no sleep)

Oh, yeah, the compiler reads it too

15-410, F'17

Synchronization

Anybody reading comp.risks?

This lecture

= OSC: Chapter 3, but not exactly!

= We are skipping 3.5 and 3.6, including the terrifying “POSIX
Shared Memory”

= OS:P+P: Sections 3.1-3.3, but not exactly

15-410, F'17

Outline

Process as pseudo-machine
= (that's all there is)

Process life cycle
Process kernel states
Process kernel state
P1/P3 memory layout

= (just a teaser for now)

15-410, F'17

A Computer

15-410, F'17

A Process

15-410, F'17

10

Process life cycle

Life cycle

= Birth
= (or, well, fission)
= School
= Work
= Death

Nomenclature
= courtesy of The Godfathers [1988]

15-410, F'17

11

Birth

Where do new processes come from?
= (Not: under a cabbage leaf, by stork, ...)

What do we need?

= Memory contents
= Text, data, stack
= CPU register contents (N of them)
= “l/O ports”
= File descriptors, e.g., stdin/stdout/stderr
= Hidden “stuff”
= timer state, current directory, umask

15-410, F117

12

Birth

Intimidating?
How to specify all of that stuff?
= What is your {name,quest,favorite_color}?

Gee, we already have one process we like...
= Maybe we could use its settings to make a new one...
= Birth via “cloning”

15-410, F'17

13

Birth — fork() - 1

“fork” - Original Unix process creation system call

Memory

= Copy all of it
= Later lecture: VM tricks may make copy cheaper

Registers

= Copy all of them
= All but one: parent learns child's process ID, child gets 0

15-410, F'17

14

Birth — fork() - 2

File descriptors

= Copy all of them
= Can't copy the files!
= Copy references to open-file state

Hidden stuff

« Do whatever is "obvious"

Result

= Original, “parent”, process
= Fully-specified “child” process — despite 0 parameters to
fork()

15-410, F'17

15

Now what?

Two copies of the same process is boring

Transplant surgery!

= Implant new memory!
= New program text
= Implant new registers!
= Old ones don't point well into the new memory
= Keep (most) file descriptors
= Good for cooperation/delegation
= Hidden state?
= Do what's “obvious”

15-410, F'17

16

Original Process

15-410, F'17

17

Toss Heap, Data

15-410, F'17

18

Load New Code, Data From File

19

Reset Stack, Heap

20

Fix “Stuff”

21

Initialize Registers

15-410, F'17

22

Begin Execution

15-410, F'17

23

What's The Implant Procedure
Called?

int execve(
char *path,
char *argv|[],
char *envp[])

15-410, F'17

24

Birth - other ways

There is another way
- Well, two

spawn()

= Carefully specify all features of new process
= Complicated
= Win: don't need to copy stuff you will immediately toss

Plan 9 rfork() / Linux clone()

= Build new process from old one

= Specify which things get shared vs. copied
= “Copy memory, share files, copy environment, share ...”

15-410, F117

School

Old process called Result is

execve (main(int argc,
char *argv|],
char *envp[])

char *path,
char *argv|[],
char *envp[]);

25 15-410, F'17

26

School

How does the magic work?
= 15-410 motto: No magic

Kernel process setup: we saw...

= Toss old data memory
= Toss old stack memory
= Load executable file

Also...

15-410, F'17

27

The Stack!

Kernel builds new stack for the process

= Transfers argv[] and envp[] to top of new stack
= Hand-crafts stack frame for ~~main()
= Sets registers

= Stack pointer (to top frame)

= Program counter (to start of ~~main())

15-410, F'17

28

Work

Process states

= Running
= User mode or kernel mode
= Blocked
= Awaiting some event
» 1/O completion, exit of another process, message, ...
» Maybe sleeping for a fixed period of time
= Scheduler: “do not run”
= Q: User mode, kernel mode, both, neither?
= Runnable
= Q: User mode, kernel mode, both, neither?
» Be sure to understand this

15-410, F'17

29

Work

Other process states

= Forking
= Obsolete, once used for special treatment
= Zombie
= Process has called exit(), parent hasn't noticed yet

“Exercise for the reader”
= Draw the state transition diagram

15-410, F'17

30

Death

Voluntary
void exit(int reason);

Hardware exception
= SIGSEGV - no memory there for you!

Software exception
= SIGXCPU - used "too much" CPU time

15-410, F'17

31

Death

System call - kill(pid, sig);
= “Deliver sig to process pid”
= (negative values of pid have “interesting” behaviors)

= Keyboard “Cc = equivalent of
= kill (getpid(), SIGINT);
= Start/stop logging
= kill (daemon pid, SIGUSR1);
= $ kill -USR1l 33
= $ kill -USR2 33
= This is a “non-kill” use of kill()
= Any other key uses of kill ()?

15-410, F'17

32

Death

System call - kill(pid, sig);
= “Deliver sig to process pid”
= (negative values of pid have “interesting” behaviors)
= Keyboard “C = kill(getpid(), SIGINT);
= Start/stop logging - kill -USR1 33
= “Lost in Space”!!
= kill(Will Robinson, SIGDANGER);

15-410, F'17

33

Death

System call - kill(pid, sig);
= “Deliver sig to process pid”
= (negative values of pid have “interesting” behaviors)
= Keyboard “C = kill(getpid(), SIGINT);
= Start/stop logging - kill -USR1 33
= “Lost in Space”!!
« kill (Will_Robinson, SIGDANGER) ;
= | apologize to IBM for lampooning their serious signal

15-410, F'17

34

Death

System call - kill(pid, sig);
= “Deliver sig to process pid”
= (negative values of pid have “interesting” behaviors)
= Keyboard “C = kill(getpid(), SIGINT);
= Start/stop logging - kill -USR1 33
= “Lost in Space”!!
= kill(Will Robinson, SIGDANGER);

= | apologize to IBM for lampooning their serious signal
» No, | apologize for that apology...

15-410, F'17

35

Process cleanup

Resource release

= Open files: close() each
= TCP: 2 minutes (or more)
= Solaris disk offline - forever (“/None shall pass!”)

= Memory: release

Accounting
= Record resource usage in a magic file

Gone?

15-410, F'17

36

“All You Zombies...”

Zombie process

= Process state reduced to exit code

= Waits around until parent calls wait()
= EXxit code copied to parent's memory
= PCB deleted from kernel

15-410, F'17

37

Kernel process state

The dreaded "PCB"
= (polychlorinated biphenol?)

15-410, F'17

38

Kernel process state

The dreaded "PCB"
= (polychlorinated biphenol?)

Process Control Block

= “Everything without a user-visible memory address”
= Kernel management information
= Scheduler state
= The “stuff”

15-410, F'17

39

Sample PCB contents

Pointer to CPU register save area
Process number, parent process number
Countdown timer value

Memory segment info

= User memory segment list
= Kernel stack reference

Scheduler info
= linked list slot, priority, “sleep channel”

15-410, F'17

15-410 Virtual Memory Layout

4080 MB

- o
40

15-410, F'17

15-410 Physical Memory Layout

User MemoryS 240 MB

Kernel Memory - 16 MB

41 15-410, F'17

42

Ready to Implement All This?

Not so complicated...
= getpid()
= fork()
= exec()
= wait()
- exit()

What could possibly go wrong?

15-410, F'17

43

Summary

Parts of a Process

= Physical — Memory pages, registers, I/O devices
= Virtual — Memory regions, registers, I/0 “ports”

Birth, School, Work, Death

“Big Picture” of system memory - both of them
= (Numbers & arrangement are 15-410-specific)

15-410, F'17

