15-410

“An Experience Like No Other”

|A32 Stack Discipline
Aug 30, 2017

Dave Eckhardt
Dave O’Hallaron

Slides originally stolen from 15-213

15-410, F'17

Synchronization

Registration

= The wait list will probably be done today or tomorrow
= | don't think everybody will fit

= If you're here but not on any wait list, see me right away
= ECE undergrad: most likely 5/15 will fit (could be more)
= ECE M.S.: 4/7 likely?

= INI: most likely 10/20?

= If you are an M.S. or or Ph.D. student and have not discussed
this class with your advisor, do so today
= We will not be registering graduate students without hearing from
their advisors

= Some people are being added this morning

= If you receive mail from an administrator, p/ease reply the same
day

If you haven't taken 15-213 (A/B, malloc lab ok)

= Contact me no later than today
2 15-410, F'17

Why Only 327

You learned x86-64 in 213
= Most machines (even phones!) are 64-bit these days
= X86-64 is simpler than IA32 for user code

Why will 410 be 1A327?

= X86-64 is not simpler for kernel code
= Machine begins in 16-bit mode, then 32, finally 64
= Interrupts are more complicated
= X86-64 is not simpler during debugging
= More registers means more registers to have wrong values
= X86-64 virtual memory is a bit of a drag
= More steps than x86-32, but not more intellectually stimulating

= There are still a lot of 32-bit machines in the world
= ...which can boot and run your personal OS

3 15-410, F'17

|A32 vs x86-64

Generating IA32 code:
gcc —-m32 -0 hello hello.c

Key differences:
* 1A32 has only 8 32-bit general purpose registers
 1A32 might use %ebp as a stack frame pointer.

gcc -m32 -fno-stack-protector -fno-omit-frame-pointer ..

 |A32 passes arguments on the stack rather than in registers
« 1A32 has different caller/callee-save register conventions

Detailed IA32 Summary:

ht}p://csapp.cs.cmu.edul3elwasidelwaside-ia32.pd1f5 S

IA32/Linux Registers

. 32 bits
Integer Registers
. Two have special uses p A N
= 3ebp, Sesp _—
. Three managed as Caller-Save ¥eax
callee-save Temporaries) —
. %ebx, $esi, $edi oex
= Old values saved on secx
stack prior to using P
= Three managed as Callee-Save sebx
caller-save Temporaries < ress
esl
» $eax, $edx, $Secx
= Do what you please, — $edi
but expect any callee ——
to do so, as well Soecial — sesp
= Register $eax also P Sebp
holds return value —

5 15-410, F'17

Private Address Spaces

Each process has its own private address space.

Warning:
numbers
specific to
Linux 2.x
on |A32!!

Oxffffffff

OxcOOOOOO0 |—

0x40000000

0x08048000
0

kernel virtual memory
(code, data, heap, stack)

user stack
(created at runtime)

v

memory
T invisible to

user code

memory mapped region for
shared libraries

T

run-time heap
(managed by malloc)

“— Dbrk

read/write segments
(.data, .bss)

\ loaded from the

read-only segments
(.init, .text, .rodata)

executable file

unused

“— %esp (stack pointer)

Warning:
details vary
by OS and
kernel
version!

15-410, F'17

|A32 Stack

] Stack “Bottom”
= Region of memory managed
with stack discipline
= “Grows” toward lower
addresses :
_ o Incre@sing
= Register $esp indicates Addr¢sses
lowest stack address

= address of “top” element
= stack pointer

Stack Grows

Stack
Pointer Down
zesp —,
Stack “Top”

15-410, F'17

|A32 Stack Pushing

pushing Stack “Bottom”

« pushl Src
= Fetch operand from Src

= Maybe a register: %ebp
= Maybe memory: 8(%ebp)

=« Decrement $esp by 4

= Store operand in memory at
address given by %esp

Increasing
Addré¢sses

Stack Grows
Down

Stack

Pointer

sesp _li.

N

Stack “Top”
8 15-410, F'17

IA32 Stack Popping

Popping
= popl Dest

= Read memory at address
given by %esp

= Increment $esp by 4
= Store into Dest operand

Stack
Pointer

sesp

Stack “Bottom”

4

Increasing
Addré¢sses

Stack Grows
Down

==

Stack “Top”

15-410, F'17

Stack Operation Examples

0x110
0x10c
0x108

10

123

213

555

0x108

0x110
0x10c
0x108
0x104

pushl %eax

123

213

213

555

0x104

0x110
0x10c
0x108
0x104

popl %edx

123

213

213

213

0x108

15-410, F'17

Procedure Control Flow

=« Use stack to support procedure call and return

Procedure call:

e call label Push return address;
Jump to label

“Return address”?
« Address of instruction after call

= Example from disassembly
= 804854e:e8 3d 06 00 00 call 8048b90 <main>
= 8048553:50 pushl %eax

» Return address = 0x8048553

Procedure return:

* ret Pop address from stack;
Jump to address

11 15-410, F'17

Procedure Call Example

804854e: e8 3d 06 00 00 call 8048b9%0 <main>
8048553: 50 pushl %eax

call 8048b90

0x110 0x110
0x10c 0x10c
0x108 123 0x108 123

0x104 |0x8048553

sesp 0x108 sesp 0x104

%eip | 0x804854e %eip | 0x8048b90

%eip is program counter

12 15-410, F'17

13

Procedure Return Example

8048591: 3

0x110
0x10c
0x108
0x104

zesp

seip

ret

123

0x8048553

0x104

0x8048591

%eip is program counter

0x110
0x10c
0x108

zesp

seip

ret

123

0x8048553

0x108

0x8048553

15-410, F'17

Stack-Based Languages

Languages that support recursion
= e.9g., C, Pascal, Java
« Code must be “reentrant”

= Multiple instantiations of a single procedure “live” at same time

= Need some place to store state of each instantiation
Arguments

Local variables

Return pointer (maybe)

Weird things (static links, exception handling, ...)

Stack discipline — key observation

« State for given procedure needed for limited time
= From time of call to time of return

= Note: callee returns before caller does

Therefore stack allocated in nested frames
= State for single procedure instantiation

14

15-410, F'17

Call Chain Example

Code Structure

yoo (...)

who (...)

amI () ;

amI () ;

. Procedure amI ()

recursive

15

amI (...)
{

amI () ;
}

Call Chain

15-410, F'17

Stack Frames

Contents

= Local variables yoo
= Return information
who
= Temporary space
Management
= Space allocated when enter
procedure
= “Set-up” code =
rame
= Deallocated when return Pointer
= “Finish” code sebp —
. roc
Pointers P
Stack —
« Stack pointer $esp indicates Pointer
stack top sesp

= Frame pointer $ebp indicates
start of current frame

16

15-410, F'17

|IA32/Linux Stack Frame

Current Stack Frame (“Top” (<
to “Bottom”)
= Parameters for function we're Caller
about to call Frame <
= “Argument build”
. Local variables AR I
= If don't all fit in registers Frame Pointer \ |Return Addr
- Caller's saved registers (%ebp) ~ Old %ebp |—
= Caller's saved frame pointer
Caller's Stack Frame Rggai\;?grs
- Return address Lo.::al
= Pushed by call instruction Variables
= Arguments for this call
Stack Pointer Ar%l:lri?j nt
(esp) —

17 15-410, F'17

swap ()

15213;
91125;

int zipl
int zip2

void call swap ()

{
swap (&zipl, &zip2);
}

void swap(int *xp, int *yp)

{

int t0 = *xp;
int t1 = *yp;
*xp = tl1;
*yp = tO0;

}
18

Calling swap from call swap

call swap:
pushl $zip2 # Global var
pushl $zipl # Global var
call swap

: Resulting
. Stack
&zip2
&zipl
Rtn adr [%esp

15-410, F'17

swap ()

void swap (int *xp, int *yp)
{

int t0 = *xpr

int tl = *YPr

*xp = tl;

*yp = t0;

19

Core

swap:
pushl

movl

pushl

movl
movl
movl
movl
movl
movl

movl
movl

popl
ret

sebp

%esp, sebp

Set
Up

12 (%ebp) , 3ecx ~
8 ($ebp) , $edx
%ecx) , %eax
$edx) , $ebx
Seax, (%edx)
%$ebx, (%ecx)

$ebx

> Body

-4 (%ebp) , $ebx
%ebp, sesp

%ebp > Finish

15-410, F'17

swap () Setup

Entering
Stack

“—— 3ebp

&zip2

&zipl

Rtn adr [*— %esp

swap:
pushl %ebp
movl %esp, 3ebp
pushl %ebx

20

15-410, F'17

swap () Setup #1

Entering
Stack

“—— 3ebp

&zip2

&zipl

Rtn adr [*— %esp

swap:
pushl $%$ebp
movl %esp, 3ebp
pushl %ebx

21

Resulting

Stack

yp

Xp

Rtn adr

%ebp

Old %ebﬂ'— %esp

15-410, F'17

swap () Setup #2

Entering gteascukltlng
Stack
“—— 3ebp
&zip2 YP
&zipl Xp
Rtn adr [*— %esp Rtn adr
Old sebp[—— %ebp
sesp
swap:

pushl %ebp
movl %esp,3ebp
pushl %ebx

22 15-410, F'17

swap () Setup #3

Entering
Stack

“—— %ebp

&zip2

&zipl

Rtn adr [%esp

swap:
pushl %ebp
movl %esp, 3ebp
pushl 3%ebx

23

Resulting
Stack

yP

Xp
Rtn adr
Old $ebp[—— %ebp

Old $ebx|*—— %esp

Observation
= Saving caller’s register $ebx

15-410, F'17

24

Effect of swap () Setup

Entering

Stack

sebp

&zip2

&zipl

Rtn adr

movl 12 (%ebp) ,h%ecx # get yp
movl 8 (%ebp) , %$edx

—— %esp

get xp

Offset
(relative to $ebp)

12
8

-4

Resulting
Stack
yP
Xp
Rtn adr
Old %ebpf $ebp
Old $ebx|*—— %esp

} Body

15-410, F'17

swap () Finish #1

swap's
Stack
Offset
12
8
4
0
-4

Observation

= Restoring caller’s register $ebx

25

yp

Xp

Rtn adr

Old $ebp[*

Old %$ebx|*

sebp

sesp

Offset

12
8
4
0

—4

YP

Xp
Rtn adr
Old %ebp[—— %ebp
Old %ebx|*—— %esp

movl -4 (%ebp) , $ebx
movl %ebp, Sesp
popl %ebp

ret

15-410, F'17

swap () Finish #2

swap's
Stack
Offset
12
8
4
0
-4

26

yp

Xp

Rtn adr

Old $ebpl*

Old %$ebx|*

%

sesp

swap’s
Stack

Offset

12
8
4
0

YP
Xp
Rtn adr
Old $ebpf—

N

sebp

sesp

movl -4 (%ebp) ,h sebx
movl $%$ebp, $esp
popl 3%ebp

ret

15-410, F'17

swap () Finish #3

L— o

cwap’s swap’s sebp
B : Stack :
Stack : .

Offset Offset
12 . 12 YP
8 s 8 Xp
s | Rtn adr 4 | Rtn adr \
o [old %eb§‘< %ebp F
sesp

movl -4 (%ebp) ,h sebx
movl %ebp, Sesp
popl %ebp

ret

27 15-410, F'17

swap () Finish #4

] —
swap's
Stack :
Offset
12 YpP
8 Xp
4 | Rtn adr

Observation/query

sebp

sesp

sebp

‘ Exiting
Stack

&zip2

&zipl [%esp

movl -4 (%ebp) ,h sebx
movl %ebp, Sesp
popl %ebp

ret

= Saved & restored caller's register $ebx

« Didn't do so for $eax, $ecx, or $edx!

28

15-410, F'17

Register Saving Conventions

When procedure yoo () calls who () :
= yoo () is the caller, who () is the callee

Can a register be used for temporary storage?

yoo: who:
movl $15213, %edx movl 8 (%ebp), %edx
call who addl $91125, %edx
addl %edx, %eax o o o
e o o ret
ret

= Contents of register $edx overwritten by who ()

29

15-410, F'17

Register Saving Conventions

When procedure yoo () calls who () :
= yoo () is the caller, who () is the callee

Can a register be used for temporary storage?

Definitions

= “Caller Save” register
= Caller saves temporary in its frame before calling

= “Callee Save” register
= Callee saves temporary in its frame before using

Conventions
= Which registers are caller-save, callee-save?

30

15-410, F'17

IA32/Linux Register Usage

. 32 bits
Integer Registers
. Two have special uses p A N
= 3ebp, Sesp _—
. Three managed as Caller-Save ¥eax
callee-save Temporaries) —
. %ebx, $esi, $edi oex
= Old values saved on secx
stack prior to using P
= Three managed as Callee-Save sebx
caller-save Temporaries < ress
esl
» $eax, $edx, $Secx
= Do what you please, — $edi
but expect any callee ——
to do so, as well Soecial — sesp
= Register $eax also P Sebp
holds return value —

31 15-410, F'17

Stack Summary

Stack makes recursion work

= Private storage for each instance of procedure call
= Instantiations don't clobber each other

= Addressing of locals + arguments can be relative to stack
positions

= Can be managed by stack discipline
= Procedures return in inverse order of calls

IA32 procedures: instructions + conventions
= call/ ret instructions mix %$eip, %$esp in a fixed way

= Register usage conventions
= Caller/ Callee save
= %ebp and %esp

= Stack frame organization conventions
= Which argument is pushed first

32 15-410, F'17

Before & After main ()

int main(int argc, char *argv[]) {
if (argc > 1) {

}

}

printf (“$s\n”, argv[1l]);
else {
char * av[3] = { 0, 0, O };

av[0] = argv[0]; av[l] = “Fred”;

execvp (av[0], av);

return (0);

}

33

15-410, F'17

The Mysterious Parts

argc, argv
= Strings from one program
= Which part of the memory map are they in?
= How did they get there?

What happens when main () does “return (0) "???

= There's no more program to run...right?
= Where does the 0 go?
= How does it get there?

410 students should seek to abolish mystery

34 15-410, F'17

The Mysterious
Parts

Stack structure when a
new program starts

argc, argv, envp

= Come from the
program that called
execve

= Kernel copies strings
from old address
space to new

35

Bottom of stack

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

envp[n] == NULL

envp[n—-1]

Siaiaiininly environ

argvlargc] = NULL

argvlargc-1]

b oo o o e e e e e e e e e e e

envp ®----

argc

return address Top of stack

Future stack frame for
main

15-410, F'17

The Mysterious Parts

What happens when main () does “return (0)”?
= Defined by C to have same effect as “exit (0)”
« But how??

36 15-410, F'17

The Mysterious Parts

What happens when main () does “return (0)”?
= Defined by C to have same effect as “exit (0)”

« But how??

The “main() wrapper”
= Receives argc, argv from OS
« Calls main (), then calls exit ()
= Provided by C library, traditionally in “crt0.s”
= Often has a “strange” name

/* not actual code */
void @ main(int argc, char *argv[]) {
exit (main (argc, argv, environ));

37 15-410, F'17

Project O - “"Stack Crawler”

C/Assembly function
= Can be called by any C function
= Prints stack frames in a symbolic way

38

-—--Stack
Function
Function
Function
Function
Function

Trace Follows—---

fun3(c='c', d=2.090000),
fun2 (£=35.000000) ,

funl (count=0) ,
funl (count=1) ,
funl (count=2) ,

in
in
in

in

in

15-410, F'17

Project O - “"Stack Crawler”

Conceptually easy
= Calling convention specifies layout of stack
« Stack is “just memory” - C happily lets you read & write

Key questions
« How do | know 0x80334720 is “funl”?
« How do | know fun3 ()'s second parameter is called “d”?
= How do | know when to stop?

39 15-410, F'17

Project 0 "Data Flow”

fun.c

symbol-table array
many slots, blank

40

tb.c

tb globals.c

A

15-410, F'17

Project 0 “Data Flow” - Compilation

fun.o

41

tb.o

tb globals.o

15-410, F'17

Project O "Data Flow™ - Linking

tb globals.o

debugger info

42 15-410, F'17

Project 0 "Data Flow" - PO “Post-Linking”

tb globals.o

debugger info

simplify

43 15-410, F'17

Summary

Review of stack knowledge
What makes main () special

Project 0 overview
Look for handout this evening

Start interviewing Project 2/3/4 partners!
http://csapp.cs.cmu.edu/3e/waside/waside-ia32.pdf

(visit http://csapp.cs.cmu.edu and select “Web Asides”)

44 15-410, F'17

Movie Night

“Primer”
= Thursday, August 29t

= 19:30, GHC 4401 (“Rashid Auditorium”)
= $1 Pizza

=« Presented by #!/cmu/cc
= Funded in part by your Student Activities Fee

45 15-410, F'17

Upper
2 hex
digits of
address

Red Hat
v. 6.2

~1920MB
memory
limit

46

FF

CO
BF

80
TF

40
3F

08
00

Stack

Heap

Shared
Libraries

Heap

Data

Text

Linux Memory Layout

Stack
- Runtime stack (8MB limit by default)

Heap
. Dynamically allocated storage
. Managed by malloc(), calloc(), new

Shared/Dynamic Libraries aka Shared Objects
. Library routines (e.g., printf (), malloc())
. Linked into object code when first executed
- Windows has “DLLs” (semantic differences)

Data, BSS
. Statically allocated data (BSS starts all-zero)
. e.g., arrays & variables declared in code

Text, RODATA
. Text - Executable machine instructions

. RODATA - Read-only (e.g., “const”)
. String literals

15-410, F'17

BF

80
TF

40
3F

08
00

47

Linux Memory Allocation

ELF
binary

Data

Text

BF

80
TF

40
3F

08
00

Loaded

e

Libraries

Data

Text

BF

80
TF

40
3F

08
00

Some
Heap

Stack

1

Libraries

Data

Text

BF

More
Heap

Stack

Data

Text

15-410, F'17

