
15-410, Fall 2017, Homework Assignment 1.

Due Wednesday, October 11, 20:59:59 p.m.

PleaŊe obŊerve the non-Ŋtandard ŊubmiŊŊion time... As we intend to make solutions available on the web
site immediately thereafter for exam-study purposes, please turn your solutions in on time.

Homework must be submitted in either PostScript or PDF format (not: Microsoft Word, Word Perfect,
Apple Works, LaTeX, XyWrite, WordStar, etc.). Submit your answers by placing them in the appropri-
ate hand-in directory, e.g., /afs/cs.cmu.edu/academic/class/15410-f17-users/$USER/hw1/$USER.ps or
/afs/cs.cmu.edu/academic/class/15410-f17-users/$USER/hw1/$USER.pdf. A plain text file (.text or
.txt) is also acceptable, though it must conform to Unix expectations, meaning lines of no more than 120
characters separated by newline characters (note that this is not the Windows convention or the MacOS
convention). Please avoid creative filenames such as hw1/my 15-410 homework.PdF.

1 Chefs (4 pts.)

Jamie, Kelly, and Morgan are chefs in a single kitchen. They cook with knives, bowls, and woks. The
maximum number of each item needed by each chef is shown in the following table.

Chef Knives Bowls Woks
Jamie 1 2 3
Kelly 3 2 1
Morgan 2 2 2

Imagine that the kitchen contains 4 knives, 4 bowls, and 4 woks.

Imagine the system is in the state depicted below. List one request which the system should grant right
away, and one request which the system should react to by blocking the process making the request. Briefly
justify each of your answers. If you can, arrange for both of your answers to involve the same resource
request, but made by two different processes.

Chef Knives Bowls Woks
Jamie 1 2 1
Kelly 1 0 1
Morgan 1 2 1
Available 1 0 1

(Continued on next page)

1

2 “Nemo’s Algorithm” (5 pts.)

Consider the following critical-section protocol. This protocol is designed for use by multiple threads. In
each thread, i is the thread number, ranging from zero through N, the number of threads in the system. For
the purposes of this question we can assume that N is a compile-time constant.

volatile int turn = -1; // initially, it’s nobody’s turn

int entering[N] = {0, }; // per-thread flags (initially all zero)

1. int n_entering(void) {

2. int n_entering = 0;

3. for (int t = 0; t < N; t++)

4. n_entering += entering[t];

5. assert(n_entering > 0);

6. return (n_entering);

7. }

8.

9. void lock(void) {

10. do {

11. do {

12. entering[i] = 0;

13. if (turn == -1)

14. turn = i;

15. } while (turn != i);

16. entering[i] = 1;

17. } while (n_entering() != 1);

18. }

19.

20. void unlock(void) {

21. turn = -1;

22. entering[i] = 0;

23. }

There is a problem with this critical-section protocol. Identify a required property which this protocol
does not have and then present a trace which supports your claim. You may use more or fewer columns or
lines in your trace. If you wish, you may abbreviate entering[] as e[] and n entering() as n e().

Execution Trace

time Thread 0 Thread 1

0

1

2

2

