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Parallelism:	Synchroniza2on	Revisited	
	

Todd	C.	Mowry,	Dave	Eckhardt	&	Dave	O’Hallaron	

I.  Synchroniza-on	on	a	Parallel	Machine	

II.  Transac-onal	Memory	
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Recall:	Intel’s	xchg	Instruc-on	

In	assembly:	

Func-onality:	
	
	
	
	
	
	

–  atomically	read	the	old	value	and	store	a	new	value	
•  at	the	loca-on	pointed	to	by	the	lock	pointer	

–  returns	the	old	value	
•  (by	storing	it	in	the	register	that	contained	the	new	value)	
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int32 xchg(int32 *lock, int32 val) { 
  register int old; 
  old = *lock;  
  *lock = val;  
  return (old); 
} 

xchg (%esi), %edi 

lock 

val old 

}	occur	atomically	
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Recall:	Using	xchg	to	Implement	a	Lock	

•  Ini-aliza-on:	
 int lock_available = 1;     //	ini,ally	available	

	
•  Grabbing	the	lock:	

–  “Try-lock”	version:	
 i_won = xchg(&lock_available, 0);  //	unavailable	a1er	this	

–  Spin-wait	version:	
	while (!xchg(&lock_available, 0)  	//	unavailable	a1er	this	
    continue; 

	
•  Unlock:	

	xchg(&lock_available, 1);   //	make	lock	available	again	
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How	Does	xchg	Actually	Work?	

•  Complica-on:	
–  fundamentally,	this	involves	both	a	load	and	a	store	to	a	memory	loca-on	

•  and	these	things	can’t	occur	simultaneously!	

•  How	x86	processors	handle	complex	instruc-ons:	
–  the	hardware	translates	x86	instruc-ons	into	simpler	μop	instruc-ons	
–  e.g.,	“add (%esi), %edi”	actually	turns	into	3	μops:		

1.  load	(%esi)	into	a	hardware	register	
2.  add	%edi	to	that	hardware	register	
3.  store	result	into	(%esi)	

•  Hence	at	the	μop	level,	“xchg (%esi), %edi”	turns	into:	
1.  load	(%esi)	into	a	hardware	register	

•  (through	hardware	register	renaming,	this	eventually	ends	up	in	%edi)	

2.  store	%edi	into	(%esi)	
•  Ques-on:	how	do	you	think	(MESI)	cache	coherence	handles	this	sequence?	

–  Answer:	need	to	get	&	hold	the	block	exclusively	throughout	the	sequence	
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If	Lock	Is	Not	Available,	Should	We	Spin	or	Yield?	

•  Uniprocessor	(review):	
–  Who	has	the	lock?		Another	thread,	that	currently	is	not	running!	
–  So	spinning	would	be	a	waste	of	-me.	

•  Mul-processor:	
–  Who	has	the	lock?	

•  Another	thread,	that	is	hopefully	currently	running	(on	a	different	processor)!	
–  Also,	parallel	programmers	try	not	to	hold	locks	for	very	long	

•  so	hopefully	it	will	become	available	soon,	and	we	want	to	grab	it	ASAP	

–  Spin-wai-ng	may	be	ahrac-ve!	
•  unless	of	course	the	thread	holding	the	lock	gets	de-scheduled	for	some	reason	
•  common	approach:	spin	for	a	while,	and	eventually	yield	

•  No	simple	answer:	depends	on	#	of	CPUs,	and	which	threads	are	running	on	them	
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while (!xchg(&lock_available, 0)	
  continue; 

while (!xchg(&lock_available, 0) 
  //	go	to	sleep	un,l	someone	does	an	unlock	
					//	(or	at	least	yield)	
  run_somebody_else(); 

Spin-Wai-ng:	 Yielding	(aka	Blocking):	
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Memory	System	Behavior	for	High-Conten-on	Locks	

•  What	if	all	processors	are	trying	to	grab	the	same	lock	at	the	same	-me:	

	
	

•  What	will	the	coherence	traffic	across	the	interconnec-on	network	look	like?	
•  As	each	processor	spin-waits,	it	repeatedly:	

–  requests	an	exclusive	copy	of	the	cache	block,	invalida-ng	the	other	caches	
–  checks	whether	the	lock	is	available,	and	finds	that	it	is	not	

	à	constant	stream	of	cache	misses	and	coherence	traffic:	very	bad!	
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…	CPU	0	 CPU	1	 CPU	N	

Cache	N	…	Cache	1	Cache	0	

Interconnec-on	Network	

Has	Lock	

while (!xchg(&lock_available, 0) 
  continue; 

Spin-Wai-ng	
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Improved	Version:	“Test	and	Test-and-Set”	Lock	

   do { 
     while (lock_available == 0)        //	“Test”	loop	
       continue; 
   } while (!xchg(&lock_available, 0));  	//	“Test-and-Set”	check	
	
•  (In	the	synchroniza,on	literature,	our	xchg	lock	is	called	a	“test-and-set”	lock.)	
•  Note	that	the	“test”	loop	uses	a	normal	memory	load	(not	an	xchg)	
•  How	does	the	coherence	traffic	change	with	this	modifica-on?	

–  while	the	lock	is	held,	the	other	processors	spin	locally	in	their	caches	
•  using	normal	read	opera-ons	in	the	“test”	loop,	which	hit	on	the	“Shared”	block	

–  so	there	is	no	longer	a	flood	of	coherence	traffic	while	the	lock	is	held	
•  While	this	reduces	traffic	while	the	lock	is	held,	have	we	solved	all	problem	cases?	

–  what	happens	when	the	lock	is	released?	
	à	a	sudden	burst	of	“test-and-set”	ahempts,	with	all	but	one	of	them	failing	
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Avoiding	the	Burst	of	Traffic	When	a	Lock	is	Released	

•  One	approach:	use	backoff	
–  upon	failing	to	acquire	lock,	delay	for	a	while	before	retrying	

•  either	constant	delay	or	exponen-al	backoff	

•  The	good	news:	
–  significantly	reduces	interconnect	traffic	

•  The	bad	news:	
–  exponen-al	backoff	can	lead	to	starva-on	for	high-conten-on	locks	

•  new	requestors	back	off	for	shorter	-mes	

–  even	without	starva-on,	seriously	non-FIFO	lock	acquisi-on	is	likely	

•  Exponen-al	backoff	seems	to	help	performance	in	prac-ce.	
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Ticket	Lock	

Two	counters:	

	
Lock:	
   
 
Unlock:	

	

•  What	is	the	coherence	traffic	like	upon	an	unlock?	
–  an	invalida-on,	and	then	a	read	miss	for	each	spinning	processor	

•  Possible	solu-on:	use	delay	while	spinning	(but	by	how	much?)	
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next_ticket 
(#	of	requestors)	

now_serving 
(#	of	releases	that	have	happened)	

Both	ini,alized	to	0.	

my_ticket = atomic_fetch_and_increment(&next_ticket); 
while (now_serving != my_ticket) 
   continue; 
MFENCE; 

MFENCE; 
now_serving++; 

Regular	(non-atomic)	opera-ons.	

Can	be	implemented	with	
Load-Linked/Store-Condi-onal	
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Ticket	Lock	Tradeoffs	

The	good	news:	
–  guaranteed	FIFO	order	

•  so	starva-on	is	not	possible	
–  traffic	can	be	quite	low	

But	could	it	be	beher	s-ll?	
–  traffic	is	not	guaranteed	to	be	O(1)	per	lock	handoff	
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Achieving	O(1)	Traffic:	Queueing	Locks	

•  Basic	Idea:	
–  pre-determine	the	order	of	lock	handoff	via	a	queue	of	waiters	
–  during	an	unlock,	the	next	thread	in	the	queue	is	directly	awakened	

•  set	a	flag	variable	corresponding	to	the	next	waiter	
•  each	thread	stares	at	a	different	memory	loca-on	à	spin	locally	in	their	caches	

•  Implementa-ons:	
–  	Array-Based	Queueing	Locks:	

–  	List-Based	Queueing	Locks:	
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1	 0	 0	 0	 0	 0	 0	 0	

3	

0	 1	 2	 3	 4	 5	 6	 7	
Availability	Flags:	

Next	Posi-on	in	Queue:	

1	 0	 0	Availability	Flags:	

Last	Posi-on	in	Queue:	
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Array-Based	Queueing	Locks	

Lock:	
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1	 0	 0	 0	 0	 0	 0	 0	

0	
0	 1	 2	 3	 4	 5	 6	 7	

Availability	Flags:	

Next	Posi-on	in	Queue:	

CPU	7	CPU	4	 CPU	3	

0	1	2	3	

my_index = atomic_fetch_and_increment(&next_position)%NUM_PROCESSORS; 
while (!lock_available[my_index]) 
   continue; 
MFENCE; 
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Array-Based	Queueing	Locks	

Lock:	
	
	
Unlock:	
	
	
Tradeoffs:	

–  Good:	FIFO	order;	O(1)	traffic	(with	cache	coherence)	
–  Bad:	requires	space	per	lock	propor-onal	to	P	(x	cache	line	size)	
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1	 0	 0	 0	 0	 0	 0	 0	

0	
0	 1	 2	 3	 4	 5	 6	 7	

Availability	Flags:	

Next	Posi-on	in	Queue:	

CPU	7	CPU	4	 CPU	3	

0	1	2	3	

MFENCE; 
lock_available[my_index] = 0; 
next_index = (my_index+1)%NUM_PROCESSORS; 
lock_available[next_index] = 1; 

0	 1	

my_index = atomic_fetch_and_increment(&next_position)%NUM_PROCESSORS; 
while (!lock_available[my_index]) 
   continue; 
MFENCE; 
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List-Based	Queueing	Locks	

•  Proposed	by	Mellor-Crummey	and	Scoh	(called	“MCS”	locks)	

•  Same	basic	idea,	but	inser-ons	occur	at	the	tail	of	a	linked	list.	
•  Space	is	allocated	on-demand	

–  aside	from	head	pointers	per	lock,	need	only	O(P)	space	for	all	locks	in	total	
•  Slightly	more	computa-on	for	lock/unlock	opera-ons	
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1	 0	 0	Availability	Flags:	

Last	Posi-on	in	Queue:	
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Which	Performs	Beher:	Test-and-Test-and-Set	or	Queue	Locks?	

•  It	depends	on	the	amount	of	lock	conten-on.	
•  Low-conten-on	locks:	

–  test-and-test-and-set	is	faster	
•  less	work	to	acquire	the	lock	

•  High-conten-on	locks:	
–  queue-based	locks	may	be	faster	

•  less	communica-on	traffic,	especially	on	large-scale	systems	

•  Hybrid	approaches	have	been	proposed	
–  switch	from	one	to	the	other,	depending	on	observed	conten-on	
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Implemen-ng	Atomic	Opera-ons	in	Hardware	

•  Intel’s	xchg	instruc-on	(review):	

–  At	the	μop	level,	“xchg	(%esi),	%edi”	becomes	2	memory	opera,ons:	
1.  load	(%esi)	into	a	hardware	register	
2.  store	%edi	into	(%esi)	

•  Challenges:	
1.  Modern	pipelines:	only	perform	1	memory	opera-on	per	instruc-on	
2.  What	if	we	want	slightly	fancier	func-onality?	

•  e.g.,	atomic	increment/decrement,	compare-and-swap,	etc.	

Mowry,	Eckhardt	&	O'Hallaron	15-410:	Parallel	Synchroniza-on	 17	

int32 xchg(int32 *lock, int32 val) { 
  register int old; 
  old = *lock;  
  *lock = val;  
  return (old); 
} 

lock 

val old 

}	occur	atomically	
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Load-Linked	/	Store	Condi-onal	(LL/SC)	

•  Key	Idea:	
–  speculate	that	the	read-modify-write	can	occur	without	getng	caught	

•  i.e.	no	other	processor	could	have	read/wrihen	the	block	during	R-M-W	sequence	
–  e.g.,	because	the	cache	block	was	held	in	an	Exclusive/Dirty	state	throughout	

–  check	whether	specula-on	succeeded	by	monitoring	coherence	traffic	
•  also	fails	upon	context	switch,	cache	line	evic-on,	etc.	

–  if	specula-on	fails,	then	retry	
•  Store	Condi-onal	(SC)	returns	zero	(in	source	register)	if	it	fails	
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void atomic_add(int *ctr, int delta) {  
  do { 
    old = LL(ctr); 
    new = old + delta; 
  } while (!(SC(ctr,new)); 
} 

Start	tracking	ctr	address	

Specula-on	failed	if	SC	returns	zero	
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Basic	Hardware	Trick	for	Implemen-ng	Atomicity	

1.  Bring	some	data	into	the	cache	
2.  Perform	calcula-ons	using	that	data	
3.  Store	new	result	to	memory	
4.  Did	we	get	through	Steps	1-3	without	conflic-ng	remote	accesses	to	the	data?	

–  If	so,	then	success!	
–  If	not,	then	try	again.	

•  (to	avoid	livelock,	we	may	eventually	retry	non-specula-vely)	

•  Observa-ons:	
–  Intel’s	xchg	does	this	non-specula-vely	(for	a	single	memory	address)	

•  by	refusing	to	give	up	access	to	the	cache	block	un-l	it	is	finished	
–  LL/SC does	this	specula-vely,	for	a	single	memory	address	
–  What	if	we	did	this	specula-vely,	for	mul-ple	memory	addresses?	

à		Transac2onal	Memory	
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}	Monitor	coherence	traffic!	



Carnegie Mellon 

Wouldn’t	it	be	nice	if…	

•  Programmer	simply	specifies	desired	outcome:	
–  “This	code	sequence	should	appear	to	execute	atomically.”	

•  The	system	(e.g.,	language,	run--me	sovware,	OS,	hardware)	makes	this	happen	
–  hopefully	op,mis,c	(rather	than	pessimis-c)	to	achieve	high	performance	
–  while	enabling	composability	of	implementa-ons	within	abstract	objects,	etc.	
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void remove_node(Node_type *node) { 
   atomic { 
      if (node->prev != NULL) 
         node->prev->next = node->next; 
      if (node->next != NULL) 
         node->next->prev = node->prev; 
   } 
} 
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Pessimis-c	vs.	Op-mis-c	Approaches	to	Atomic	Sequences	

•  Pessimis-c	approach	(e.g.,	locks,	monitors):	
–  allow	only	one	thread	at	a	-me	to	execute	a	poten-ally-conflic-ng	atomic	

sequence	
•  Op-mis-c	approach	(e.g.,	lock-free	programming,	transac-onal	memory):	

–  allow	mul-ple	threads	to	specula-vely	execute	poten-ally-conflic-ng	atomic	
sequences;	roll-back	and	retry	if	specula-on	fails	
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LOCK	

UNLOCK	

Pessimis-c	

Success?	

Op-mis-c	
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Intel’s	Transac-onal	Synchroniza-on	Extensions	(TSX)	

Restricted	Transac2onal	Memory	(RTM):	
•  XBEGIN	/	XEND:	specify	beginning	and	end	of	transac-on	

•  Transac-ons	may	abort	due	to	conflict	or	explicit	abort	instruc-on	(XABORT)	
•  If	transac-on	does	abort:	

–  jump	to	target	specified	by	the	XBEGIN	operand	
•  abort	informa-on	is	returned	in	%eax	
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Source:	Ravi	Rajwar,	Mar,n	Dixon,	“Intel	Transac,onal	Synchroniza,on	Extensions”,	IDF	2012.	

void remove_node(Node_type *node) { 
   atomic {  /* XBEGIN */ 
      if (node->prev != NULL) 
         node->prev->next = node->next; 
      if (node->next != NULL) 
         node->next->prev = node->prev; 
   }         /* XEND */ 
} 
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Simple	RTM	Example:	Implemen-ng	Locks	

•  Can	be	used	for	other	transac-onal	opera-ons,	of	course	(beyond	locks)	
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Retry:  xbegin Abort  // Enter RTM execution, Abort is fallback path 
 cmp mutex, 0  // Check to see if mutex is free 
 jz Success 
 xabort $0xff  // Abort transactional memory if mutex busy 

Abort: 
 // check EAX and do retry policy 
 // (actually acquire lock or wait to retry) 

 
Success: … 

acquire_lock(&mutex): 

release_lock(&mutex): 

 cmp mutex, 0  // If mutex not free, then was not RTM execution 
 jz Commit 
 mov mutex, 0  // non-RTM unlock (for compatibility) 

Commit:  xend          // commit RTM execution 

Source:	Ravi	Rajwar,	Mar,n	Dixon,	“Intel	Transac,onal	Synchroniza,on	Extensions”,	IDF	2012.	
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Major	Roles	of	the	Hardware	in	Transac-onal	Memory	

1.  Detects	Conflicts	between	Transac-ons	
–  typically	done	at	a	cache	line	granularity	within	L1	caches	

•  leveraging	cache	coherence	messages	(in	a	MESI-like	scheme)	

–  conflict	if	at	least	one	transac-on	writes	to	a	loca-on	accessed	by	another	
–  if	a	conflict	is	detected,	then	abort	transac-on	
–  what	if	an	accessed	cache	block	is	evicted?	

•  in	many	TM	designs:	transac-on	aborts	(can	no	longer	track	conflicts)	
•  in	TSX:	tracking	s-ll	occurs	

2.  Buffers	Side-Effects	un-l	Transac-on	either	Commits	or	Aborts	
–  held	within	cache	in	a	special	state	(not	visible	to	other	processors)	
–  if	transac-on	commits:	these	blocks	all	become	visible	
–  if	transac-on	aborts:	these	blocks	are	all	invalidated	

The	size	of	a	transac,on	is	usually	limited	by	cache	capacity	and	associa,vity!	
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Summary	

•  Implemen-ng	locks	on	parallel	machines	
–  parallel	applica-ons	oven	prefer	spin-wai-ng	(carefully!)	to	yielding	
–  BUT	naïve	spin-wai-ng	can	result	in	devasta-ng	coherence	traffic	

•  Improvements	over	“test-and-set”	locks:	
–  “test	and	test-and-set”:	spin	in	caches	with	read	hits	

•  but	s-ll	a	burst	of	traffic	when	lock	is	released	
•  backoff:	may	avoid	burst,	but	what	about	starva-on?	

–  -cket	locks:	FIFO	order	
–  queuing	locks:	O(1)	traffic	(array	or	list	based)	

•  Transac-onal	Memory:	
–  e.g.,	Intel’s	TSX	instruc-ons	
–  enables	atomic	sequences	involving	mul-ple	memory	loca-ons	

•  (think	“handful”	of	loca-ons,	not	a	huge	number)	
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