
15-410, F’161

IPC & RPC
Nov. 7, 2016

Dave EckhardtDave Eckhardt

Dave O'HallaronDave O'Hallaron

L27_IPCRPC

15-410
“...Mooooo!...”

Synchronization

ScoreboardScoreboard
 Congratulations to groups who are on the board...

 Some groups are clearly ahead of the game!

 That URL again
 http://www.cs.cmu.edu/~410/scoreboard.html

Synchronization

Project 3 tactical considerationsProject 3 tactical considerations
 Getting the shell running is important

 We won't build a hand-load kernel for each test!
 Test harness relies on shell to launch programs

 Getting a body of code solid is important
 Better for exec() to work 1,000 times than thr_fork once
 It is important to read the hurdle web page and the hurdle

form early and often!

 Run tests as soon as you can
 Scoreboard can be a source of inspiration!

 Carefully consider the P3extra overtime
 In general, getting a really solid kernel is the best thing

» For your grade

» For your education!

15-410, F’164

Outline

A Pattern Language (for client-server messaging)A Pattern Language (for client-server messaging)
 Client view, server view, world view

IPC – InterProcess CommunicationIPC – InterProcess Communication

RPC – Remote Procedure CallRPC – Remote Procedure Call

TextbookTextbook
 OSC - Sections 3.4-3.6
 OS:P+P - missing

15-410, F’165

Client View

SendClient Request

 ReceiveClient Response

15-410, F’166

Server View

Request ServerReceive

 Send Response Server

15-410, F’167

Reality?

Those views are Those views are correct with respect to each viewercorrect with respect to each viewer

The kernel's view is more complexThe kernel's view is more complex

15-410, F’168

Reality?

Those views are Those views are correct with respect to each viewercorrect with respect to each viewer

The kernel's view is more complexThe kernel's view is more complex
 Data transfer, obviously
 Buffering (maybe)
 Blocking
 Matching a live request against a blocked request, or else

blocking

15-410, F’169

Receiver Prepares

ServerReceive

15-410, F’1610

Client Sends Request

Send

ServerReceive

Client Request

15-410, F’1611

Send Matches Receive

Send

ServerReceive

Client Request Request ServerReceive

15-410, F’1612

Client Posts Receive

Send

 Receive

ServerReceive

Client Request

Client

Request ServerReceive

15-410, F’1613

Server Posts Reply

Send

 Receive

ServerReceive

Client Request

Client

Request ServerReceive

 Send Response Server

15-410, F’1614

Reply Matches Receive

Send

 Receive

ServerReceive

Client Request

Client

Request ServerReceive

 Send Response Server ReceiveClient Response

15-410, F’1615

Reply Matches Receive

Send

 Receive

ServerReceive

Client Request

Client

Request ServerReceive

 Send Response Server ReceiveClient Response

Other event sequences are possible!

15-410, F’1616

Scope of “IPC”

Communicating processes on one machineCommunicating processes on one machine

What about multiple machines?What about multiple machines?
 Virtualize single-machine IPC
 Switch to a “network” model

 Failures happen
 Administrative domain switch
 ...
 (“RPC”)

15-410, F’1617

IPC parts

NamingNaming

Synchronization/bufferingSynchronization/buffering

Message body issuesMessage body issues
 Copy vs. reference
 Size

15-410, F’1618

Naming

Message sent to Message sent to processprocess or to or to mailboxmailbox??

Process modelProcess model
 send(P, msg)
 receive(Q, &msg) or receive(&id, &msg)

No need to set up “communication link”No need to set up “communication link”
 But you need to know process id's
 You get only one “link” per process pair

15-410, F’1619

Naming

Mailbox modelMailbox model
 send(box1, msg)
 receive(box1, &msg) or receive(&box, &msg)

Where do mailbox id's come from?Where do mailbox id's come from?

““name server” approachname server” approach
box = createmailbox();
register(box1, “Terry's process”);
boxT = lookup(“Terry's process”);

File system approach – File system approach – greatgreat (if you have one) (if you have one)
box = createmailbox(“/tmp/Terry”);

15-410, F’1620

Multiple Senders

ProblemProblem
 Receiver needs to know who sent request

Typical solutionTypical solution
 “Message” not just a byte array
 OS imposes structure

 sender id (maybe process id and mailbox id)
 maybe: type, priority, ...

15-410, F’1621

Synchronization

IssueIssue
 Does communication imply synchronization?

Blocking send()?Blocking send()?
 Ok for request/response pattern
 Provides assurance of message delivery
 Bad for producer/consumer pattern

Non-blocking send()?Non-blocking send()?
 Raises buffering issue (below)

15-410, F’1622

Synchronization

Blocking receive()?Blocking receive()?
 Ok/good for “server thread”

 Remember, de-scheduling is a kernel service

 Ok/good for request/response pattern
 Awkward for some servers

 Abort connection when client is “too idle”

Pure-non-blocking receive?Pure-non-blocking receive?
 Ok for polling
 Polling is costly

15-410, F’1623

Synchronization

Receive-with-timeoutReceive-with-timeout
 Wait for message
 Abort if timeout expires
 Can be good for highly-reliable or real-time systems
 What timeout value is appropriate?

 Depends on each specific and complete system
 Timeout values are error prone

15-410, F’1624

Synchronization

Meta-receiveMeta-receive
 Specify a group of mailboxes
 Wake up on first message

Receive-scanReceive-scan
 Specify list of mailboxes, timeout
 OS indicates which mailbox(es) are “ready” for what
 Unix: select(), poll()

15-410, F’1625

Buffering

IssueIssue
 How much space does OS provide “for free”?
 “Kernel memory” limited!

OptionsOptions
 No buffering

 implies blocking send

 Fixed size, undefined size
 Send blocks unpredictably

15-410, F’1626

A Buffering Problem

P1P1
send(P2, p1-my-status)
receive(P2, &p1-peer-status)

15-410, F’1627

A Buffering Problem

P1P1
send(P2, p1-my-status)
receive(P2, &p1-peer-status)

P2P2
send(P1, p2-my-status)
receive(P1, &p2-peer-status)

What's the problem?What's the problem?
 Can you draw a picture of it?

15-410, F’1628

Message Size Issue

Ok to copy Ok to copy smallsmall messages sender messages sender ⇒⇒ receiver receiver

Bad to copy Bad to copy 1-megabyte1-megabyte messages messages
 (Why?)

Bad suggestion: “Chop up large messages”Bad suggestion: “Chop up large messages”
 Why?

15-410, F’1629

Message Size Issue

Ok to copy Ok to copy smallsmall messages sender messages sender ⇒⇒ receiver receiver

Bad to copy Bad to copy 1-megabyte1-megabyte messages messages
 (Why?)

Bad suggestion: “Chop up large messages”Bad suggestion: “Chop up large messages”
 Evades the issue!

15-410, F’1630

“Out-of-line” Data

Message can Message can refer torefer to memory regions memory regions
 (page-aligned, multiple-page)
 Either “copy” or transfer ownership to receiver
 Can share the physical memory

 Mooooo!

15-410, F’1631

“Rendezvous”

ConceptConcept
 Blocking send
 Blocking receive

Great for OSGreat for OS
 No buffering required!

Theoretically interestingTheoretically interesting

Popular in a variety of languagesPopular in a variety of languages
 (most of them called “Ada”)

15-410, F’1632

Mach IPC – ports

Port: Mach “mailbox” objectPort: Mach “mailbox” object
 One receiver

 (one “backup” receiver)

 Potentially many senders

Ports identify system objectsPorts identify system objects
 Each task identified/controlled by a port
 Each thread identified/controlled by a port
 Kernel exceptions delivered to “exception port”

 “External Pager Interface” - page faults in user space!

15-410, F’1633

Mach IPC – Port Rights

Receive rightsReceive rights
 “Receive end” of a port
 Held by one task, not published

 receive rights imply ownership

Send rightsSend rights
 “Send end” - ability to transmit message to mailbox
 Frequently published via “name server” task
 Confer no rights (beyond “denial of service”)

15-410, F’1634

Mach IPC – Message Contents

Memory regionsMemory regions
 In-line for “small” messages (copied)
 Out-of-line for “large” messages

 Sender may de-allocate on send
 Otherwise, copy-on-write

““Port rights”Port rights”
 Sender specifies task-local port #
 OS translates to internal port-id while queued
 Receiver observes task-local port #

15-410, F’1635

Mach IPC – Operations

sendsend
 block, block(n milliseconds), don't-block
 “send just one”

 when destination full, queue 1 message in sender thread
 sender notified when transfer completes

receivereceive
 receive from port
 receive from port set
 block, block(n milliseconds), don't-block

15-410, F’1636

Mach IPC – “RPC”

Common pattern: “Remote” Procedure CallCommon pattern: “Remote” Procedure Call
 Really: “cross-task” procedure call

Client synchronization/message flowClient synchronization/message flow
 Blocking send, blocking receive

Client must allow server to respondClient must allow server to respond
 Transfer “send rights” in message

 “Send-once rights” speed hack

Server message flow (N threads)Server message flow (N threads)
 Blocking receive, non-blocking send

15-410, F’1637

Mach IPC – Naming

Port send rights are OS-managed capabilitiesPort send rights are OS-managed capabilities
 unguessable, unforgeable

How to contact a server?How to contact a server?
 Ask the name server task

 Trusted – source of all capabilities

How to contact the name server?How to contact the name server?
 Task creator specifies name server for new task

 Can create custom environment for task tree

» By convention, send rights to name server are located at
a particular client port number (like stdin/stdout/stderr)

 System boot task launches nameserver, gives out rights

15-410, F’1638

IPC Summary

NamingNaming
 Name server?
 File system?

Queueing/blockingQueueing/blocking

Copy/share/transferCopy/share/transfer

A Unix surpriseA Unix surprise
 sendmsg()/recvmsg() pass file descriptors!

15-410, F’1639

RPC Overview

RPC = Remote RPC = Remote Procedure CallProcedure Call

Concept: extend IPC across machinesConcept: extend IPC across machines
 Maybe across “administrative domains”

MarshallingMarshalling

Server locationServer location

Call semanticsCall semantics

Request flowRequest flow

15-410, F’1640

RPC Model

ApproachApproach
d = computeNthDigit(CONST_PI, 3000);

 Abstract away from “who computes it”
 Should “work the same” when remote Cray does the job

IssuesIssues
 Must specify server somehow
 What “digit value” is “server down”?

 Exceptions useful in “modern” languages

15-410, F’1641

Marshalling

Values must cross the networkValues must cross the network

Machine formats differMachine formats differ
 Integer byte order

 www.scieng.com/pdf/byteorder.pdf

 Floating point format
 IEEE 754 or not

 Memory packing/alignment issues

15-410, F’1642

Marshalling

Define a “network format”Define a “network format”
 ASN.1 - “self-describing” via in-line tags
 XDR – not

““Serialize” language-level object to byte streamSerialize” language-level object to byte stream
 Rules typically recursive

 Serialize a struct by serializing its fields in order

 Implementation probably should not be recursive
 (Why not?)

15-410, F’1643

Marshalling

IssuesIssues
 Some types don't translate well

 Ada has ranged integers, e.g., 44..59
 Not everybody really likes 64-bit ints
 Floating point formats are religious issues

 Performance!

 Memory speed ≅ network speed

 The dreaded “pointer problem”

15-410, F’1644

Marshalling

struct node {
 int value;
 struct node *neighbors[4];
} nodes[1024];

nnodes = sizeof(nodes)/sizeof(nodes[0]);

n = occupancy(nodes, nnodes);
bn = best_neighbor(node);
i = value(node);

Implications?Implications?

15-410, F’1645

Marshalling

n = occupancy(nodes, nnodes);
 Marshall array – ok

bn = best_neighbor(node);
 Marshall graph structure – not so ok

i = value(node);
 Avoiding marshalling graph – not obvious

 “Node fault”??

15-410, F’1646

Server Location

Which machine?Which machine?
 Multiple AFS cells on the planet
 Each has multiple file servers

ApproachesApproaches
 Special hostnames: www.cmu.edu
 Machine lists

 AFS CellSrvDB /usr/vice/etc/CellServDB

 DNS SRV records (RFC 2782)

15-410, F’1647

Server Location

Which port?Which port?
 Must distinguish services on one machine

 Single machine can be AFS volume, vldb, pt server

 Fixed port assignment
 AFS: fileserver UDP 7000, volume location 7003
 /etc/services or www.iana.org/assignments/port-numbers
 RFC 2468 www.rfc-editor.org/rfc/rfc2468.txt

 Dynamic port assignment
 Contact “courier” / “matchmaker” service via RPC
 ...on a fixed port assignment!

15-410, F’1648

Call Semantics

Typically, caller blocksTypically, caller blocks
 Matches procedure call semantics

Blocking can be expensiveBlocking can be expensive
 By a factor of a million(!!) over real procedure call

““Asynchronous RPC”Asynchronous RPC”
 Transmit request, do other work, check for reply
 Not really “PC” any more
 More like programming language “futures”

15-410, F’1649

Fun Call Semantics

Batch RPCBatch RPC
 Send list of procedure calls
 Later calls can use results of earlier calls

IssuesIssues
 Abort batch if one call fails?

 Yet another programming language?

 Typically wrecks “procedure call” abstraction
 Your code must make N calls before 1st answer

15-410, F’1650

Fun Call Semantics

Batch RPC ExamplesBatch RPC Examples
 NFS v4, RFC 3010
 Bloch, A Practical Approach to Replication of Abstract

Data Objects

15-410, F’1651

Sad Call semantics

Network failureNetwork failure
 Retransmit request

 How long?

Server rebootServer reboot
 Does client deal with RPC session restart?
 Did the call “happen” or not?

 Retransmitting “remove foo.c” all day long may not be safe!

15-410, F’1652

Client Flow

Client code calls Client code calls stubstub routine routine
 “Regular code” which encapsulates the magic

Stub routineStub routine
 Locates communication channel

 If not established: costly location/set-up/authentication

 Marshals information
 Procedure #, parameters

 Sends message, awaits reply
 Unmarshals reply, returns to user code

15-410, F’1653

Server Flow

Thread pool runs Thread pool runs skeletonskeleton code code

Skeleton code Skeleton code
 Waits for request from a client
 Locates client state

 Authentication/encryption context

 Unmarshals parameters
 Calls “real code”
 Marshals reply
 Sends reply

15-410, F’1654

RPC Deployment

Define interfaceDefine interface
 Get it right, you'll live with it for a while!
 AFS & NFS RPC layers ~15 years old

““Stub generator”Stub generator”
 Special-purpose compiler
 Turns “interface spec” into stubs & skeleton

Link stub code with client & serverLink stub code with client & server

Run a server!Run a server!

15-410, F’1655

Java RMI

RRemote emote MMethod ethod IInvocationnvocation

Serialization: programmer/language cooperationSerialization: programmer/language cooperation
 Dangerously subtle!

 Bloch, Effective Java

RMI > RPCRMI > RPC
 Remote methods ≅ remote procedures

 Parameters can be (differently) remote
 Client on A can call method of class implemented on B

passing object located on C

» (slowly)

15-410, F’1656

RPC Summary

RPC is lots of funRPC is lots of fun

So much fun that lots of things don't do itSo much fun that lots of things don't do it
 SMTP
 HTTP

RPC = IPCRPC = IPC
+ server location, marshalling, network failure, delays

- special copy tricks, speed

Remote Objects? Remote Objects? Effective JavaEffective Java, , Bitter JavaBitter Java

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

