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Synchronization

 Checkpoint 2
• Wednesday!  During this time period!
• Wean Hall 5207!
• You must attend (unless you make arrangements

by Monday evening)
• Even if not everything is working!
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Synchronization

 Who uses...?
• Wean 52xx Linux boxes?  Full?

• West Wing Linux boxes?  Full?
• Crash box?
• Simics on cycle servers?

• Please limit yourself to 1 Simics on 1 machine

 Partner reminder
• If P2 was troubling, and P3 isn't improving, see us
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Motivation

 What happens when you turn on your PC?
 How do we get to kernel_main()?
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Overview

 Requirements of Booting
 Ground zero
 BIOS
 Boot loader
 Our projects: Multiboot, OSKit
 BIOS extensions: PXE, APM
 Other universes: “big iron”, Open Firmware
 Further reading
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Requirements of Booting

 Initialize machine to a known state
 Make sure basic hardware works
 Inventory hardware
 Load a real operating system
 Run the real operating system
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Ground Zero

 You turn on the machine
 Execution begins in real mode at a specific

memory address
• Real mode - primeval x86 addressing mode

• Only 1 MB of memory is addressable
• First instruction fetch address is 0xFFFF0 (???)
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Ground Zero

 You turn on the machine
 Execution begins in real mode at a specific

memory address
• Real mode - primeval x86 addressing mode

• Only 1 MB of memory is addressable
• First instruction fetch address is 0xFFFF0 (???)

•  “End of memory” (20-bit infinity), minus 15...
• Contains a jump to the actual BIOS entry point

• Great, what’s a BIOS?
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Basic Input/Output System
(BIOS)

 Code stored in mostly-read-only memory
• Flash (previously EEPROM, previously EPROM)

 Configures hardware details
• RAM refresh rate or bus speed
• Password protection
• Boot-device order

 Loads OS, acts as mini-OS
 Provides some device drivers to real OS



Carnegie Mellon University 10

BIOS POST

 Power On Self Test (POST)
 Scan for critical resources

• RAM
• Test it (only a little!)

• Graphics card – look for driver code at 0xC0000
• Disk – look for driver code at 0xC8000
• Keyboard

 Missing something?
• Beep
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BIOS Boot-Device Search

 Consult saved settings for selected order
• “A: C: G:” (maybe PXE)

 Load the first sector from a boot device
- Could be a floppy, hard disk, CDROM
- Without a BIOS, we’d be in a bit of a jam

 If the last two bytes are AA55, we’re set
 Otherwise look somewhere else

• If no luck, strike terror into user's heart:
• “No Operating System Present”
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BIOS Boot-Sector Launch

 Boot sector is copied to 0x7C00
 Execution is transferred to 0x7C00
 Extra step for hard disk or CD-ROM

• Boot sector (“MBR”) knows about partitions
• BIOS starts it running at 0x7C00, of course
• Copies itself elsewhere in memory, jumps there
• Loads “active” partition's boot sector at 0x7C00

 Now we’re executing the boot loader – the
first “software” to execute on the PC
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Boot Loader

 Some boot loaders designed to load one OS
 Others give you a choice of which to load
 Some are small and have a simple interface

• “F1 FreeBSD     F2 Windows”
 Some are large, contain GUI, shell prompt
 We use GRUB

• http://www.gnu.org/software/grub/
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Boot Loader's Job

 Mission: load operating system
 From where?

• “/boot/kernel.gz” is easier said than done!
• May need to understand a file system

• Directories, inodes, symbolic links!
• May need to understand multiple file systems

• Single disk may contain more than one
• Layout defined by “partition label”

• ...and “extended partition label”
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Boot Loader's Job

 Mission: load operating system
 From where?

• “/boot/kernel.gz” is easier said than done
• May need to understand a file system

• Directories, inodes, symbolic links!
• May need to understand multiple file systems

• Single disk may contain more than one
• Layout defined by “partition label”

• ...and “extended partition label”

 But...but...boot loader is 510 bytes of code!
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Multi-Stage Boot Loader

 GRUB is larger than one sector
 First sector, loaded in by the BIOS…

• ...just loads the rest of the boot loader
• “GRUB Loading stage2”

 GRUB then presents boot menu
 The OS-load challenge

• BIOS runs in real mode – only 1 meg of RAM!
• OS “may be” larger than 1 meg

• Linux – often; Windows – absolutely!
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Brain-Switching

 Switch back and forth between real and
protected mode
• Real mode: BIOS works, provides disk driver
• Protected mode: can access lots of memory

 Switching code is tricky
• Somewhat like OS process context switch
• Roughly 16 carefully-crafted instructions each way

 Load done ⇒ jump to the kernel’s entry point
- How do we know the kernel’s entry point?
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Entry Point, Binary Format, ...

 Can't we just jump to the first byte?
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Entry Point, Binary Format, ...

 Can't we just jump to the first byte?
 Probably not

• If kernel is a “regular executable” it begins
with an “executable file header” (e.g., ELF)

• If the OS has the concept of “BSS”, the
zeroes aren't in the file...

 Loading the bytes into RAM isn't enough
• We must understand & mutate them
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Multiboot Specification

 Attempt to define “portable kernel format”
 Multiboot “standard”

• Binary specifies entry point &c
 The multiboot header

must be located in the
first 8192 bytes

 This is part of the
mysterious 410kern/boot/head.S…

0x1badb002

flags

checksum

header_addr

load_addr

load_end_addr

bss_end_addr

entry_addr
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410 “Pebbles” (from OSkit)

 Entry point is asm function _start in head.o
 This calls other assembly code to set up

GDT, TSS, IDT
 This calls the first C function, mb_entry()
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OSkit

 mb_entry() calls:
• mb_util_lmm(): tell LMM which RAM the

BIOS and boot loader say to use
• mb_util_cmdline(): parse “command line”

provided by boot loader (yielding argv[])
• sim_booted(): tell Simics which kernel to

debug
• kernel_main()...that's you!
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PXE

 Preboot Execution Environment
 “How a PC should net boot”

• DHCP protocol extensions to say
• “I am a PXE client of DHCP”
• “My machine ID is ... my hardware type is ...”

• DHCP server assigns IP address
• Instructs client: network settings, TFTP server, file

• Client downloads 2nd-stage boot via TFTP
 PXE libraries for downloaded loader to use

• Ethernet, UDP, TFTP
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APM

 Advanced Power Management
 Problem – Laptop hardware is “special”

• Lots of power-critical hardware
• Totally different from one machine to another

• Disk spin-down (“standard”, so may be fairly easy)
• Display backlight, processor speed (not so easy)
• South bridge, DRAM controller, keyboard...

• Sequencing these in the right order is very machine-specific

 Problem – user does things (close lid...)



Carnegie Mellon University 25

APM

 Solution - “power kernel”
• OS asks it to control power hardware
• Power hardware tells OS about events

• Lid closed
• Battery low

 Complex rules for messaging back and forth
• OS required to poll APM periodically

• May involve switch to 16-bit mode

• Suspend protocol: prepare/commit/abort...
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ACPI

 Advanced Configuration & Power Interface
• APM's “big brother”

 Good news
• OS gets more understanding, control
• BIOS provides ACPI code to OS in virtual-

machine format
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ACPI

 Bad news – implementation
• What the BIOS tells you is often wrong

• Many “on this machine, patch this to that” fixes
necessary

• FreeBSD kernel contains “BIOS blacklist”
• Strings identifying BIOS versions known to have fatal ACPI

bugs
• ACPI virtual-machine code often depends on being

run by one particular virtual machine
• ACPI “OS-independent” virtual machine code

checks which OS is executing it and behaves
differently(!!)
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ACPI

 Bad news – structural
• Interaction between ACPI and other code is

delicate and fraught with peril
• Should VGA BIOS “reset method” be called before 

or after restoring ACPI video device state?

 Bad news – throw weight
• Specification pages

• 1.0 = ~400
• 2.0 = ~500
• 3.0 = ~600
• 4.0 = ~700
• 5.0 = ~900
• 6.0 = ~1000
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“Big Iron” (mainframes)

 “Boot loader” may be a separate machine
• When main CPU powers on, it does not run code!
• “Front-end processor” tasks

• Run thorough diagnostics on main machine
• Store OS into its memory
• Set its program counter to entry point
• Turn on instruction fetching

 “Front-end” also contains a debugger
• Useful when your OS crashes
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Open Firmware

 Sun & Mac hardware (until 2006, sigh)
 Goal: share devices across processor families

• Ethernet, SCSI disk controller, ...
 Solution

• Processor-independent BIOS modules on cards
• Collection of FORTH methods

• test, boot, open, close, read, write, etc.

 “Boot ROM” may contain a small debugger
• Sun, Mac do this... PCs are just starting to catch up
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EFI

 “Next big thing” in the PC world
• Including PC's made by Apple(!?)

 “Super sized”: #partitions, partition labels, ...
 More device drivers (not just disk, video)

• May be signed, certified, protected
 Arrived mostly with x86-64 machines
 Many more interfaces, larger interfaces

• Spec pages: EFI 1.10 = 1100, UEFI 2.1 = 1682, ...
• EFI+ACPI: 2300 pages of fun for the whole family
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Summary

 It's a long, strange trip
• Power on: maybe no RAM, maybe no CPU!!

• Maybe beep, maybe draw a sad face
• Locate OS
• Load (N stages)
• Tell kernel about the machine and the boot params
• Provide support to kernel once it's running
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Further Reading

 More BIOS details
• http://www.pcguide.com/ref/mbsys/bios/bootSequence-c.html

• http://bioscentral.com/
 A real memory tester - memtest86.com
 Open-source BIOS!

• www.linuxbios.org
• openbios.info

 PXE
• ftp://download.intel.com/labs/manage/wfm/download/pxespec.pdf 
• http:/ipxe.org
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Further Reading

 ACPI
• http://www.acpi.info

 EFI
• http://www.uefi.org
• (old) http://www.intel.com/technology/efi/
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