
Bootstrapping

Dave Eckhardt
Dave O'Hallaron

Steve Muckle

Synchronization

 Checkpoint 2
• Wednesday! During this time period!
• Wean Hall 5207!
• You must attend (unless you make arrangements

by Monday evening)
• Even if not everything is working!

Carnegie Mellon University 3

Synchronization

 Who uses...?
• Wean 52xx Linux boxes? Full?

• West Wing Linux boxes? Full?
• Crash box?
• Simics on cycle servers?

• Please limit yourself to 1 Simics on 1 machine

 Partner reminder
• If P2 was troubling, and P3 isn't improving, see us

Carnegie Mellon University 4

Motivation

 What happens when you turn on your PC?
 How do we get to kernel_main()?

Carnegie Mellon University 5

Overview

 Requirements of Booting
 Ground zero
 BIOS
 Boot loader
 Our projects: Multiboot, OSKit
 BIOS extensions: PXE, APM
 Other universes: “big iron”, Open Firmware
 Further reading

Carnegie Mellon University 6

Requirements of Booting

 Initialize machine to a known state
 Make sure basic hardware works
 Inventory hardware
 Load a real operating system
 Run the real operating system

Carnegie Mellon University 7

Ground Zero

 You turn on the machine
 Execution begins in real mode at a specific

memory address
• Real mode - primeval x86 addressing mode

• Only 1 MB of memory is addressable
• First instruction fetch address is 0xFFFF0 (???)

Carnegie Mellon University 8

Ground Zero

 You turn on the machine
 Execution begins in real mode at a specific

memory address
• Real mode - primeval x86 addressing mode

• Only 1 MB of memory is addressable
• First instruction fetch address is 0xFFFF0 (???)

• “End of memory” (20-bit infinity), minus 15...
• Contains a jump to the actual BIOS entry point

• Great, what’s a BIOS?

Carnegie Mellon University 9

Basic Input/Output System
(BIOS)

 Code stored in mostly-read-only memory
• Flash (previously EEPROM, previously EPROM)

 Configures hardware details
• RAM refresh rate or bus speed
• Password protection
• Boot-device order

 Loads OS, acts as mini-OS
 Provides some device drivers to real OS

Carnegie Mellon University 10

BIOS POST

 Power On Self Test (POST)
 Scan for critical resources

• RAM
• Test it (only a little!)

• Graphics card – look for driver code at 0xC0000
• Disk – look for driver code at 0xC8000
• Keyboard

 Missing something?
• Beep

Carnegie Mellon University 11

BIOS Boot-Device Search

 Consult saved settings for selected order
• “A: C: G:” (maybe PXE)

 Load the first sector from a boot device
- Could be a floppy, hard disk, CDROM
- Without a BIOS, we’d be in a bit of a jam

 If the last two bytes are AA55, we’re set
 Otherwise look somewhere else

• If no luck, strike terror into user's heart:
• “No Operating System Present”

Carnegie Mellon University 12

BIOS Boot-Sector Launch

 Boot sector is copied to 0x7C00
 Execution is transferred to 0x7C00
 Extra step for hard disk or CD-ROM

• Boot sector (“MBR”) knows about partitions
• BIOS starts it running at 0x7C00, of course
• Copies itself elsewhere in memory, jumps there
• Loads “active” partition's boot sector at 0x7C00

 Now we’re executing the boot loader – the
first “software” to execute on the PC

Carnegie Mellon University 13

Boot Loader

 Some boot loaders designed to load one OS
 Others give you a choice of which to load
 Some are small and have a simple interface

• “F1 FreeBSD F2 Windows”
 Some are large, contain GUI, shell prompt
 We use GRUB

• http://www.gnu.org/software/grub/

Carnegie Mellon University 14

Boot Loader's Job

 Mission: load operating system
 From where?

• “/boot/kernel.gz” is easier said than done!
• May need to understand a file system

• Directories, inodes, symbolic links!
• May need to understand multiple file systems

• Single disk may contain more than one
• Layout defined by “partition label”

• ...and “extended partition label”

Carnegie Mellon University 15

Boot Loader's Job

 Mission: load operating system
 From where?

• “/boot/kernel.gz” is easier said than done
• May need to understand a file system

• Directories, inodes, symbolic links!
• May need to understand multiple file systems

• Single disk may contain more than one
• Layout defined by “partition label”

• ...and “extended partition label”

 But...but...boot loader is 510 bytes of code!

Carnegie Mellon University 16

Multi-Stage Boot Loader

 GRUB is larger than one sector
 First sector, loaded in by the BIOS…

• ...just loads the rest of the boot loader
• “GRUB Loading stage2”

 GRUB then presents boot menu
 The OS-load challenge

• BIOS runs in real mode – only 1 meg of RAM!
• OS “may be” larger than 1 meg

• Linux – often; Windows – absolutely!

Carnegie Mellon University 17

Brain-Switching

 Switch back and forth between real and
protected mode
• Real mode: BIOS works, provides disk driver
• Protected mode: can access lots of memory

 Switching code is tricky
• Somewhat like OS process context switch
• Roughly 16 carefully-crafted instructions each way

 Load done ⇒ jump to the kernel’s entry point
- How do we know the kernel’s entry point?

Carnegie Mellon University 18

Entry Point, Binary Format, ...

 Can't we just jump to the first byte?

Carnegie Mellon University 19

Entry Point, Binary Format, ...

 Can't we just jump to the first byte?
 Probably not

• If kernel is a “regular executable” it begins
with an “executable file header” (e.g., ELF)

• If the OS has the concept of “BSS”, the
zeroes aren't in the file...

 Loading the bytes into RAM isn't enough
• We must understand & mutate them

Carnegie Mellon University 20

Multiboot Specification

 Attempt to define “portable kernel format”
 Multiboot “standard”

• Binary specifies entry point &c
 The multiboot header

must be located in the
first 8192 bytes

 This is part of the
mysterious 410kern/boot/head.S…

0x1badb002

flags

checksum

header_addr

load_addr

load_end_addr

bss_end_addr

entry_addr

Carnegie Mellon University 21

410 “Pebbles” (from OSkit)

 Entry point is asm function _start in head.o
 This calls other assembly code to set up

GDT, TSS, IDT
 This calls the first C function, mb_entry()

Carnegie Mellon University 22

OSkit

 mb_entry() calls:
• mb_util_lmm(): tell LMM which RAM the

BIOS and boot loader say to use
• mb_util_cmdline(): parse “command line”

provided by boot loader (yielding argv[])
• sim_booted(): tell Simics which kernel to

debug
• kernel_main()...that's you!

Carnegie Mellon University 23

PXE

 Preboot Execution Environment
 “How a PC should net boot”

• DHCP protocol extensions to say
• “I am a PXE client of DHCP”
• “My machine ID is ... my hardware type is ...”

• DHCP server assigns IP address
• Instructs client: network settings, TFTP server, file

• Client downloads 2nd-stage boot via TFTP
 PXE libraries for downloaded loader to use

• Ethernet, UDP, TFTP

Carnegie Mellon University 24

APM

 Advanced Power Management
 Problem – Laptop hardware is “special”

• Lots of power-critical hardware
• Totally different from one machine to another

• Disk spin-down (“standard”, so may be fairly easy)
• Display backlight, processor speed (not so easy)
• South bridge, DRAM controller, keyboard...

• Sequencing these in the right order is very machine-specific

 Problem – user does things (close lid...)

Carnegie Mellon University 25

APM

 Solution - “power kernel”
• OS asks it to control power hardware
• Power hardware tells OS about events

• Lid closed
• Battery low

 Complex rules for messaging back and forth
• OS required to poll APM periodically

• May involve switch to 16-bit mode

• Suspend protocol: prepare/commit/abort...

Carnegie Mellon University 26

ACPI

 Advanced Configuration & Power Interface
• APM's “big brother”

 Good news
• OS gets more understanding, control
• BIOS provides ACPI code to OS in virtual-

machine format

Carnegie Mellon University 27

ACPI

 Bad news – implementation
• What the BIOS tells you is often wrong

• Many “on this machine, patch this to that” fixes
necessary

• FreeBSD kernel contains “BIOS blacklist”
• Strings identifying BIOS versions known to have fatal ACPI

bugs
• ACPI virtual-machine code often depends on being

run by one particular virtual machine
• ACPI “OS-independent” virtual machine code

checks which OS is executing it and behaves
differently(!!)

Carnegie Mellon University 28

ACPI

 Bad news – structural
• Interaction between ACPI and other code is

delicate and fraught with peril
• Should VGA BIOS “reset method” be called before

or after restoring ACPI video device state?

 Bad news – throw weight
• Specification pages

• 1.0 = ~400
• 2.0 = ~500
• 3.0 = ~600
• 4.0 = ~700
• 5.0 = ~900
• 6.0 = ~1000

Carnegie Mellon University 29

“Big Iron” (mainframes)

 “Boot loader” may be a separate machine
• When main CPU powers on, it does not run code!
• “Front-end processor” tasks

• Run thorough diagnostics on main machine
• Store OS into its memory
• Set its program counter to entry point
• Turn on instruction fetching

 “Front-end” also contains a debugger
• Useful when your OS crashes

Carnegie Mellon University 30

Open Firmware

 Sun & Mac hardware (until 2006, sigh)
 Goal: share devices across processor families

• Ethernet, SCSI disk controller, ...
 Solution

• Processor-independent BIOS modules on cards
• Collection of FORTH methods

• test, boot, open, close, read, write, etc.

 “Boot ROM” may contain a small debugger
• Sun, Mac do this... PCs are just starting to catch up

Carnegie Mellon University 31

EFI

 “Next big thing” in the PC world
• Including PC's made by Apple(!?)

 “Super sized”: #partitions, partition labels, ...
 More device drivers (not just disk, video)

• May be signed, certified, protected
 Arrived mostly with x86-64 machines
 Many more interfaces, larger interfaces

• Spec pages: EFI 1.10 = 1100, UEFI 2.1 = 1682, ...
• EFI+ACPI: 2300 pages of fun for the whole family

Carnegie Mellon University 32

Summary

 It's a long, strange trip
• Power on: maybe no RAM, maybe no CPU!!

• Maybe beep, maybe draw a sad face
• Locate OS
• Load (N stages)
• Tell kernel about the machine and the boot params
• Provide support to kernel once it's running

Carnegie Mellon University 33

Further Reading

 More BIOS details
• http://www.pcguide.com/ref/mbsys/bios/bootSequence-c.html

• http://bioscentral.com/
 A real memory tester - memtest86.com
 Open-source BIOS!

• www.linuxbios.org
• openbios.info

 PXE
• ftp://download.intel.com/labs/manage/wfm/download/pxespec.pdf
• http:/ipxe.org

Carnegie Mellon University 34

Further Reading

 ACPI
• http://www.acpi.info

 EFI
• http://www.uefi.org
• (old) http://www.intel.com/technology/efi/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

