
15-410, F’16 1

Virtual Memory #3

Dave Eckhardt
Dave O’Hallaron

15-410
“...The cow and Zaphod...”

15-410, F’16 2

Synchronization
First Project 3 checkpoint

n  Monday during class time
n  Meet in Wean 5207

n  If your group number ends with
»  0-2 try to arrive 5 minutes early
»  3-5 arrive at 10:42:30
»  6-9 arrive at 10:59:27

n  Preparation
n  Your kernel should be in mygroup/p3ck1
n  It should load one program, enter user space, gettid()

»  Ideally lprintf() the result of gettid()
n  We will ask you to load & run a test program we will name
n  Explain which parts are “real”, which are “demo quality”

15-410, F’16 3

Outline

Last time
n  The mysterious TLB
n  Partial memory residence (demand paging) in action
n  The task of the page fault handler

Today
n  Fun big speed hacks
n  Sharing memory regions & files
n  Page replacement policies

15-410, F’16 4

Demand Paging Performance

Effective access time of memory word
n  (1 – pmiss) * Tmemory + pmiss * Tdisk

Textbook example (a little dated)

n  Tmemory = 100 ns (.1 us)
n  Tdisk = 25 ms (25,000 us)
n  pmiss = 1/1,000 slows down by factor of 250
n  slowdown of 10% needs pmiss < 1/2,500,000!!!

15-410, F’16 5

Speed Hacks

COW
ZFOD (Zaphod?)
Memory-mapped files

n  What msync() is supposed to be used for...

15-410, F’16 6

Copy-on-Write

fork() produces two very-similar processes
n  Same code, data, stack

Expensive to copy pages
n  Many will never be modified by new process

n  Especially in fork(), exec() case

Share physical frames instead of copying?
n  Easy: code pages – read-only
n  Dangerous: stack pages!

15-410, F’16 7

Copy-on-Write

Simulated copy
n  Copy page table entries to new process
n  Mark PTEs read-only in old & new
n  Done! (saving factor: 1024)

n  Simulation is excellent as long as process doesn't write...

15-410, F’16 8

Copy-on-Write

Simulated copy
n  Copy page table entries to new process
n  Mark PTEs read-only in old & new
n  Done! (saving factor: 1024)

n  Simulation is excellent as long as process doesn't write...

Making it real
n  Process writes to page (Oops! We lied...)
n  Page fault handler responsible

n  Kernel makes a copy of the shared frame
n  Page tables adjusted

»  ...each process points page to private frame
»  ...page marked read-write in both PTEs

15-410, F’16 9

Example Page Table

Virtual Address

stack

code

data
Page table

f029VRW
f237VRX

f981VRW

15-410, F’16 10

Copy-on-Write of Address Space

15-410, F’16 11

Memory Write ⇒ Permission Fault

15-410, F’16 12

Copy Into Blank Frame

15-410, F’16 13

Adjust PTE frame pointer, access

15-410, F’16 14

Zero Pages

Very special case of copy-on-write
n  ZFOD = “Zero-fill on demand”

Many process pages are “blank”
n  All of bss
n  New heap pages
n  New stack pages

Have one system-wide all-zero frame
n  Everybody points to it
n  Logically read-write, physically read-only
n  Reads of zeros are free
n  Writes cause page faults & cloning

15-410, F’16 15

Memory-Mapped Files

Alternative interface to read(), write()
n  mmap(addr, len, prot, flags, fd, offset)
n  new memory region presents file contents
n  write-back policy typically unspecified

n  unless you msync()...

Benefits
n  Avoid serializing pointer-based data structures
n  Reads and writes may be much cheaper

n  Look, Ma, no syscalls!

15-410, F’16 16

Memory-Mapped Files

Implementation
n  Memory region remembers mmap() parameters
n  Page faults trigger read() calls
n  Pages stored back via write() to file

Shared memory
n  Two processes mmap() “the same way”
n  Point to same memory region

15-410, F’16 17

Page Replacement/Page Eviction

Process always want more memory frames
n  Explicit deallocation is rare
n  Page faults are implicit allocations

System inevitably runs out of frames
Solution outline

n  Pick a frame, store contents to disk
n  Transfer ownership to new process
n  Service fault using this frame

15-410, F’16 18

Pick a Frame

Two-level approach
n  Determine # frames each process “deserves”
n  “Process” chooses which frame is least-valuable

n  Most OS's: kernel actually does the choosing

System-wide approach
n  Determine globally-least-useful frame

15-410, F’16 19

Store Contents to Disk

Where does it belong?
n  Allocate backing store for each page

n  What if we run out?

Must we really store it?
n  Read-only code/data: no!

n  Can re-fetch from executable
n  Saves paging space & disk-write delay
n  But file-system read() may be slower than paging-disk read

n  Not modified since last page-in: no!
n  Hardware typically provides “page-dirty” bit in PTE
n  Cheap to “store” a page with dirty==0

15-410, F’16 20

Page Eviction Policies

Don't try these at home
n  FIFO
n  Optimal
n  LRU

Practical
n  LRU approximation

Current Research
n  ARC (Adaptive Replacement Cache)
n  CAR (Clock with Adaptive Replacement)
n  CART (CAR with Temporal Filtering)

15-410, F’16 21

Page Eviction Policies

Don't try these at home
n  FIFO
n  Optimal
n  LRU

Practical
n  LRU approximation

Current Research
n  ARC (Adaptive Replacement Cache)
n  CAR (Clock with Adaptive Replacement)
n  CART (CAR with Temporal Filtering)
n  CARTHAGE (CART with Hilarious AppendaGE)

15-410, F’16 22

FIFO Page Replacement

Concept
n  Queue of all pages – named as (task id, virtual address)
n  Page added to tail of queue when first given a frame
n  Always evict oldest page (head of queue)

Evaluation
n  Fast to “pick a page”
n  Stupid

n  Will indeed evict old unused startup-code page
n  But guaranteed to eventually evict process's favorite page

too!

15-410, F’16 23

Optimal Page Replacement

Concept
n  Evict whichever page will be referenced latest

n  “Buy the most time” until next page fault

Evaluation
n  Requires perfect prediction of program execution
n  Impossible to implement

So?
n  Used as upper bound in simulation studies

15-410, F’16 24

LRU Page Replacement

Concept
n  Evict Least-Recently-Used page
n  “Past performance may not predict future results”

n  ...but it's an important hint!

Evaluation
n  Would probably be reasonably accurate
n  LRU is computable without a fortune teller
n  Bookkeeping very expensive

n  (right?)

15-410, F’16 25

LRU Page Replacement

Concept
n  Evict Least-Recently-Used page
n  “Past performance may not predict future results”

n  ...but it's an important hint!

Evaluation
n  Would probably be reasonably accurate
n  LRU is computable without a fortune teller
n  Bookkeeping very expensive

n  Hardware must sequence-number every page reference
»  Evictor must scan every page's sequence number

n  Or you can “just” do a doubly-linked-list operation per ref

15-410, F’16 26

Approximating LRU

Hybrid hardware/software approach
n  1 reference bit per page table entry
n  OS sets reference = 0 for all pages
n  Hardware sets reference=1 when PTE is used in lookup
n  OS periodically scans

n  (reference == 1) ⇒ “recently used”
n  Result:

n  Hardware sloppily partitions memory into “recent” vs. “old”
n  Software periodically samples, makes decisions

15-410, F’16 27

Approximating LRU

“Second-chance” algorithm
n  Use stupid FIFO queue to choose victim candidate page
n  reference == 0?

n  not “recently” used, evict page, steal its frame
n  reference == 1?

n  “somewhat-recently used” - don't evict page this time
n  append page to rear of queue (“second chance”)
n  set reference = 0

»  Process must use page again “soon” for it to be skipped

Approximation
n  Observe that queue is randomly sorted

n  We are evicting not-recently-used, not least-recently-used

15-410, F’16 28

Approximating LRU

“Clock” algorithm
n  Observe: “Page queue” requires linked list

n  Extra memory traffic to update pointers
n  Observe: Page queue's order is essentially random

n  Doesn't add anything to accuracy
n  Revision

n  Don't have a queue of pages
n  Just treat memory as a circular array

15-410, F’16 29

Clock Algorithm

static int nextpage = 0;
boolean reference[NPAGES];

int choose_victim() {
 while (reference[nextpage]) {
 reference[nextpage] = false;
 nextpage = (nextpage+1) % NPAGES;
 }
 return(nextpage);
}

15-410, F’16 30

“Page Buffering”

Problem
n  Don't want to evict pages only after a fault needs a frame
n  Must wait for disk write before launching disk read (slow!)

“Assume a blank page...”
n  Page fault handler can be much faster

“page-out daemon”
n  Scans system for dirty pages

n  Write to disk
n  Clear dirty bit
n  Page can be instantly evicted later

n  When to scan, how many to store? Indeed...

15-410, F’16 31

Frame Allocation

How many frames should a process have?

Minimum allocation

n  Examine worst-case instruction
n  Can multi-byte instruction cross page boundary?
n  Can memory parameter cross page boundary?
n  How many memory parameters?
n  Indirect pointers?

15-410, F’16 32

“Fair” Frame Allocation

Equal allocation
n  Every process gets same number of frames

n  “Fair” - in a sense
n  Probably wasteful

Proportional allocation
n  Every process gets same percentage of residence

n  (Everybody 83% resident, larger processes get more frames)
n  “Fair” - in a different sense
n  Probably the right approach

»  Theoretically, encourages greediness

15-410, F’16 33

Thrashing

Problem
n  Process needs N frames...

n  Repeatedly rendering image to video memory
n  Must be able to have all “world data” resident 20x/second

n  ...but OS provides N-1, N/2, etc.

Result
n  Every page OS evicts generates “immediate” fault
n  More time spent paging than executing
n  Paging disk constantly busy

n  Denial of “paging service” to other processes
n  Widespread unhappiness

15-410, F’16 34

“Working-Set” Allocation Model

Approach
n  Determine necessary # frames for each process

n  “Working set” - size of frame set you need to get work done
n  If unavailable, swap entire process out

n  (later, swap some other process entirely out)

How to measure working set?
n  Periodically scan all reference bits of process's pages
n  Combine multiple scans (see text)

Evaluation
n  Expensive
n  Can we approximate it?

15-410, F’16 35

Page-Fault Frequency Approach

Approach
n  Recall, “thrashing” == “excessive” paging
n  Adjust per-process frame quotas to balance fault rates

n  System-wide “average page-fault rate” (10 faults/second)
n  Process A fault rate “too high”: increase frame quota
n  Process A fault rate “too low”: reduce frame quota

What if quota increase doesn't help?
n  If giving you some more frames didn't help, maybe you

need a lot more frames than you have...
n  Swap you out entirely for a while

15-410, F’16 36

Program Optimizations

Is paging an “OS problem”?
n  Can a programmer reduce working-set size?

Locality depends on data structures
n  Arrays encourage sequential accesses

n  Many references to same page
n  Predictable access to next page

n  Random pointer data structures scatter references

Compiler & linker can help too
n  Don't split a routine across two pages
n  Place helper functions on same page as main routine

Effects can be dramatic

15-410, F’16 37

Summary

Speed hacks
Page-replacement policies

n  The eviction problem
n  Sample policies

n  For real: LRU approximation with hardware support
n  Page buffering
n  Frame Allocation (process page quotas)

Definition & use of
n  Dirty bit, reference bit

Virtual-memory usage optimizations

15-410, F’16 38

Synchronization

First Project 3 checkpoint

n  Wednesday during class time
n  Meet in GHC 3000

n  If your group number ends with
»  0-2 try to arrive 5 minutes early
»  3-5 arrive at 10:42:30
»  6-9 arrive at 10:59:27

n  Preparation
n  Your kernel should be in mygroup/p3ck1
n  It should load one program, enter user space, gettid()

»  Ideally lprintf() the result of gettid()
n  We will ask you to load & run a test program we will name
n  Explain which parts are “real”, which are “demo quality”

15-410, F’16 39

Synchronization
Second Project 3 checkpoint

n  Wednesday during class time
n  Attendance is mandatory except by prior arrangement
n  Meet in Wean 5207

n  If your group number ends with
»  0-2 arrive at 10:42:30
»  3-5 arrive at 10:59:27
»  6-9 try to arrive 5 minutes early

n  Preparation
n  Your kernel should be in mygroup/p3ck2
n  Depending on whether you are demo'ing fork() or exec() we

will ask you to run different test programs
n  Either way we hope to observe context switching

15-410, F’16 40

Synchronization
First Project 3 checkpoint

n  Monday during class time
n  Meet in Wean 5207

n  If your group number ends with
»  0-2 try to arrive 5 minutes early
»  3-5 arrive at 10:42:30
»  6-9 arrive at 10:59:27

n  Preparation
n  Your kernel should be in mygroup/p3ck1
n  It should load one program, enter user space, gettid()

»  Ideally lprintf() the result of gettid()
n  We will ask you to load & run a test program we will name
n  Explain which parts are “real”, which are “demo quality”

15-410, F’16 41

Synchronization

Project 2 due tonight
n  Check you can write your mygroup/p2 directory early
n  Please put your files in mygroup/p2

n  Not p2/p2, p2/our_project_2, p2/p2.tar
n  Please don't mail us files
n  Don't forget about the late-day form if you need it

n  Remember to balance against P3

Upcoming
n  HW1 out soon, due sometime Wednesday
n  Exam – Thursday
n  Project 3 (including one checkpoint before spring break)

15-410, F’16 42

Synchronization

First Project 3 checkpoint
n  Monday during class time
n  Meet in Wean 5207

n  If your group number ends with
»  0-2 try to arrive 5 minutes early
»  3-5 arrive at 10:42:30
»  6-9 arrive at 10:59:27

n  Preparation
n  Your kernel should be in mygroup/p3ck1
n  It should load one program, enter user space, gettid()

»  Ideally lprintf() the result of gettid()
n  We will ask you to load & run a test program we will name
n  Explain which parts are “real”, which are “demo quality”

15-410, F’16 43

Synchronization

Upcoming
n  HW1 out today, due Tuesday evening
n  P2 – due Friday evening
n  Exam review - Monday
n  Exam – Wednesday evening (watch for e-mail!)
n  Project 3 (including one checkpoint before spring break)

