
15-410, F'161

Virtual Memory #2
Oct. 5, 2016

Dave EckhardtDave Eckhardt

Dave O'HallaronDave O'Hallaron

L16_VM2

15-410
“...The mysterious TLB...”

15-410, F'162

Last Time

Mapping problem: logical vs. physical addressesMapping problem: logical vs. physical addresses

Contiguous memory mapping (base, limit)Contiguous memory mapping (base, limit)

Swapping – taking turns in memorySwapping – taking turns in memory

PagingPaging
 Array mapping page numbers to frame numbers
 Observation: typical table is sparsely occupied
 Response: some sparse data structure (e.g., 2-level array)

15-410, F'163

Swapping

Multiple user processesMultiple user processes
 Sum of memory demands > system memory
 Goal: Allow each process 100% of system memory

Take turnsTake turns
 Temporarily evict process(es) to disk
 “Swap daemon” shuffles process in & out
 Can take seconds per process
 Creates external fragmentation problem

15-410, F'164

External Fragmentation (“Holes”)

Process 3

Process 4

Process 1

OS Kernel

Process 2

Process 3

Process 4Process 1

OS Kernel

Process 2

15-410, F'165

Benefits of Paging

Process growth problemProcess growth problem
 Any process can use any free frame for any purpose

Fragmentation compaction problemFragmentation compaction problem
 Process doesn't need to be contiguous

Long delay to swap a whole processLong delay to swap a whole process
 Swap part of the process instead!

15-410, F'166

Partial Residence

P0 code 0

OS Kernel

[free]
P0 data 0
P1 data 0

P1 stack 0

P0 stack 0
P1 data 1

[free]

P0 code 0

P0 code 1
P0 data 0
P0 stack 0

P1 code 0

P1 data 0
P1 data 1
P1 stack 0

15-410, F'167

Page Table Entry (PTE) flags

Valid/Present bit – set by OSValid/Present bit – set by OS
 Frame pointer is valid, no need to fault

Protection bits – set by OSProtection bits – set by OS
 Read/write/execute

Dirty bitDirty bit
 Hardware sets 0 ⇒ 1 when data stored into page

 OS sets 1 ⇒ 0 when page has been written to disk

Reference bitReference bit
 Hardware sets 0 ⇒ 1 on any data access to page

 OS uses for page eviction (later)

15-410, F'168

Outline

The mysterious TLBThe mysterious TLB

Partial memory residence (demand paging) in actionPartial memory residence (demand paging) in action

The task of the page fault handlerThe task of the page fault handler

15-410, F'169

Double Trouble? Triple Trouble?

Program requests memory accessProgram requests memory access

Processor makes Processor makes twotwo memory accesses! memory accesses!
 Split address into page number, intra-page offset
 Add to page table base register
 Fetch page table entry (PTE) from memory
 Add frame address, intra-page offset
 Fetch data from memory

15-410, F'1610

Double Trouble? Triple Trouble?

Program requests memory accessProgram requests memory access

Processor makes Processor makes twotwo memory accesses! memory accesses!
 Split address into page number, intra-page offset
 Add to page table base register
 Fetch page table entry (PTE) from memory
 Add frame address, intra-page offset
 Fetch data from memory

Can be worse than that...Can be worse than that...
 x86 Page-Directory/Page-Table

 Three physical accesses per virtual access!

 x86-64 has a four-level page-mapping system

15-410, F'1611

Translation Lookaside Buffer (TLB)

ProblemProblem
 Cannot afford double/triple/... memory latency

Observation - “locality of reference”Observation - “locality of reference”
 Program often accesses “nearby” memory

 Next instruction often on same page as current instruction
 Next byte of string often on same page as current byte
 (“Array good, linked list bad”)

SolutionSolution
 Page-map hardware caches virtual-to-physical mappings

 Small, fast on-chip memory
 “Free” in comparison to slow off-chip memory

15-410, F'1612

Simplest Possible TLB

ApproachApproach
 Remember the most-recent virtual-to-physical translation

 (obtained from, e.g., Page Directory + Page Table)

 See if next memory access is to same page
 If so, skip PD/PT memory traffic; use same frame
 3X speedup, cost is two 20-bit registers

» “Great work if you can get it”

15-410, F'1613

Simplest Possible TLB

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

⇒f07⇒
....

Page
Directory

15-410, F'1614

Simplest Possible TLB

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

⇒f07⇒
....

Page
Directory

15-410, F'1615

Simplest Possible TLB

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

⇒f07⇒
....

Page
Directory

f34802A5

15-410, F'1616

TLB “Hit”

Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
........

f08
f07
....

Page
Directory

f34802A5

802A5

15-410, F'1617

TLB “Miss”

Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
........

f08
f07
....

Page
Directory

f34802A5

802A4

15-410, F'1618

TLB “Refill”

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

⇒f07⇒
....

Page
Directory

f25802A4

15-410, F'1619

Simplest Possible TLB

Can you think of a “pathological” instruction?Can you think of a “pathological” instruction?
 What would it take to “break” a 1-entry TLB?

How many TLB entries do we need, anyway?How many TLB entries do we need, anyway?

15-410, F'1620

TLB vs. Context Switch

After we've been running a while...After we've been running a while...
 ...the TLB is “hot” - full of page ⇒ frame translations

Interrupt!Interrupt!
 Some device is done...
 ...should switch to some other task...
 ...what are the parts of context switch, again?

 General-purpose registers
 ...?

15-410, F'1621

TLB vs. Context Switch

After we've been running a while...After we've been running a while...
 ...the TLB is “hot” - full of page ⇒ frame translations

Interrupt!Interrupt!
 Some device is done...
 ...should switch to some other task...
 ...what are the parts of context switch, again?

 General-purpose registers
 Page Table Base Register
 ...?

15-410, F'1622

TLB vs. Context Switch

After we've been running a while...After we've been running a while...
 ...the TLB is “hot” - full of page ⇒ frame translations

Interrupt!Interrupt!
 Some device is done...
 ...should switch to some other task...
 ...what are the parts of context switch, again?

 General-purpose registers
 Page Table Base Register
 Entire contents of TLB!!

» (why?)

15-410, F'1623

x86 TLB Flush

1. Declare new page directory (set %cr3)1. Declare new page directory (set %cr3)
 Clears every entry in TLB (whoosh!)

 Footnote: doesn't clear “global” pages...

» Which pages might be “global”?

2. INVLPG instruction2. INVLPG instruction
 Invalidates TLB entry of one specific page
 Is that more efficient or less?

15-410, F'1624

x86 Type Theory – Final Version

Instruction Instruction ⇒⇒ segment selector segment selector
 [PUSHL specifies selector in %SS]

Process Process ⇒⇒ (selector (selector ⇒⇒ (base,limit)) (base,limit))
 [Global,Local Descriptor Tables]

Segment base, address Segment base, address ⇒⇒ linear address linear address

TLB: linear address TLB: linear address ⇒⇒ physical address, or... physical address, or...

Process Process ⇒⇒ (linear address high (linear address high ⇒⇒ page table) page table)

Page Table: linear address middle Page Table: linear address middle ⇒⇒ frame address frame address

Memory: frame address, offset Memory: frame address, offset ⇒⇒

15-410, F'1625

Is there another way?

That seems That seems really complicatedreally complicated
 Is that hardware monster really optimal for every OS and

program mix?
 “The only way to win is not to play?”

Is there another way?Is there another way?
 Could we have no page tables?
 How would the hardware map virtual to physical???

15-410, F'1626

Software-loaded TLBs

ReasoningReasoning
 We need a TLB “for performance reasons”
 OS defines each process's memory structure

 Which memory regions, permissions
 Lots of processes share frames of /bin/bash!

 Hardware page-mapping unit imposes its own ideas
 Why impose a semantic middle-man?

ApproachApproach
 OS knows all mappings for an address space
 TLB contains a subset of them
 TLB miss generates an exception

 OS quickly fills in correct v⇒p mapping

15-410, F'1627

Software TLB features

Mapping entries can be computed many waysMapping entries can be computed many ways
 Imagine a system with one process memory size

 TLB miss becomes a matter of arithmetic

Mapping entries can be “locked” in TLBMapping entries can be “locked” in TLB
 Good idea to lock the TLB-miss handler's TLB entry...
 Great for real-time systems

Further readingFurther reading
 http://yarchive.net/comp/software_tlb.html

Software TLBsSoftware TLBs
 PowerPC 603, 400-series (but NOT 7xx/9xx, Cell)
 MIPS, some SPARC

15-410, F'1628

TLB vs. Project 3

x86 has a nice, automatic TLBx86 has a nice, automatic TLB
 Hardware page-mapper fills it for you
 Activating new page directory flushes TLB automatically
 What could be easier?

It's not It's not totallytotally automatic automatic
 Something “natural” in your kernel may confuse it...

TLB debugging in Simics (you will need this!)TLB debugging in Simics (you will need this!)
 logical-to-physical (l2p) command
 cpu0_tlb.info, cpu0_tlb.status, cpu0.tablewalk

 More bits “trying to tell you something”

 [INVLPG issues with Simics 1. Simics 2, 3, 4 seem ok]

15-410, F'1629

Partial Memory Residence

Error-handling code not used by every runError-handling code not used by every run
 No need for it to occupy memory for entire duration...

Tables may be allocated larger than usedTables may be allocated larger than used
player players[MAX_PLAYERS];

Computer can run Computer can run veryvery large programs large programs
 Much larger than physical memory
 As long as “active” footprint fits in RAM
 Swapping can't do this

Programs can launch fasterPrograms can launch faster
 Needn't load whole program before running

15-410, F'1630

“Virtual Memory Approach”

Use RAM frames as a cache for the set of all pagesUse RAM frames as a cache for the set of all pages
 Some pages are fast to access (in a RAM frame)
 Some pages are slow to access (in a disk “frame”)

Page tables indicate which pages are “resident”Page tables indicate which pages are “resident”
 Non-resident pages are missing from the TLB

 And have “present=0” in page table entry, if we have a
hardware page-mapping unit

 Access to a non-resident page generates a page fault
 Hardware invokes page-fault exception handler

Hopefully “most” references hit in the RAM cacheHopefully “most” references hit in the RAM cache

15-410, F'1631

Page fault – Reasons, Responses

Address is invalid/illegal – deliver Address is invalid/illegal – deliver software exceptionsoftware exception
 Unix – SIGSEGV
 Mach – deliver message to thread's exception port
 15-410 – swexn handler, or else kill thread

Process is growing stack – give it a new frameProcess is growing stack – give it a new frame

““Cache misses” - fetch from diskCache misses” - fetch from disk
 Where on disk, exactly?

15-410, F'1632

Satisfying Page Faults

code

data

bss

stack

Filesystem

Paging Space

Free-frame pool

15-410, F'1633

Page fault story - 1

Process issues memory referenceProcess issues memory reference
 TLB: miss
 (PT: “not present”)

Surprise!Surprise! Into the kernel... Into the kernel...
 Processor dumps exception frame onto kernel stack (x86)
 Transfers via “page fault” interrupt descriptor table entry
 Runs exception handler

15-410, F'1634

Page fault story – 2

Classify fault addressClassify fault address
 Illegal address ⇒ deliver an ouch, else...

Code/rodata region of executable?Code/rodata region of executable?
 Determine which sector of executable file
 Launch read() from file into an unused frame

Previously resident r/w data, paged outPreviously resident r/w data, paged out
 “somewhere on the paging partition”
 Queue disk read into an unused frame

First use of bss/stack pageFirst use of bss/stack page
 Allocate a frame full of zeroes, insert into PT

15-410, F'1635

Page fault story – 3

Block the process (for most cases)Block the process (for most cases)
 Switch to running another

Handle I/O-complete interruptHandle I/O-complete interrupt
 Fill in PTE (present = 1)
 Mark process runnable

Restore registers, switch page tableRestore registers, switch page table
 Faulting instruction re-started transparently
 Single instruction may fault more than once!

15-410, F'1636

Memory Regions vs. Page Tables

What's a poor page fault handler to do?What's a poor page fault handler to do?
 Kill process?
 Copy page, mark read-write?
 Fetch page from file? Which? Where?

Page table not a good data structurePage table not a good data structure
 Format defined by hardware
 Per-page nature is repetitive
 Not enough bits to encode OS metadata

 Disk sector address “may possibly” be > 32 bits

15-410, F'1637

Dual-view Memory Model

LogicalLogical
 Process memory is a list of regions
 “Holes” between regions are illegal addresses
 Per-region methods

 fault(), evict(), unmap()

PhysicalPhysical
 Process memory is a list of pages
 Faults delegated to per-region methods
 Many “invalid” pages can be made valid

 But sometimes a region fault handler returns “error”

» Handle as with “hole” case above

15-410, F'1638

Page-fault story (for real)

Examine fault addressExamine fault address

Look up: address Look up: address ⇒⇒ region region

region->fault(addr, access_mode)region->fault(addr, access_mode)
 Quickly fix up problem
 Or start fix, block process, run scheduler

15-410, F'1639

Summary

The mysterious TLBThe mysterious TLB
 No longer mysterious

Process address spaceProcess address space
 Logical: list of regions
 Hardware: list of pages

Fault handler is Fault handler is complicatedcomplicated
 Demand-load from file, page in from paging area, ...

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

