
15-410, S'161

Yield
Feb. 5, 2016

Dave EckhardtDave Eckhardt

Dave O'HallaronDave O'Hallaron

L11b_Yield

15-410
“...process_switch(P2) 'takes a while'...”

15-410, S'162

Synchronization

Thread library due tonightThread library due tonight
 Please follow hand-in procedure on Projects page

15-410, S'163

Synchronization

Thread library due tonightThread library due tonight
 Just kidding!

Who has...Who has...
 ...read handouts?
 ...unpacked tarball?
 ...issued a system call?
 ...drawn stack pictures?
 ...had a thread killed due to a page fault?

15-410, S'164

Synchronization

We hope you use the milestones and attack planWe hope you use the milestones and attack plan
 Pitfalls exist and we hope to steer you away
 Please don't wait “just one week” to find out when the

milestones are...
 ...if you haven't read the handouts yet, please do so today.

Take advantage of course staffTake advantage of course staff
 If you see me I may require you to draw pictures
 Because this is very likely to help you

Review material if necessaryReview material if necessary
 We genuinely expect you to be operating from the

“Questions” and “Debugging” lecture material
 If you missed class or were late, please review them as

necessary

15-410, S'165

Outline

Context switchContext switch
– Motivated by yield()

– This is a core idea of this class
● You will benefit if your P3 context switch is clean and solid
● There's more than one way to do it

– Even more than one good way
– As with P2 thread_fork, part of the design is figuring

out what parameters context_switch() should take...

– This lecture is “early”
● Struggle with it today
● Hopefully it'll be easier when you struggle with it in P3

– Note: today we'll talk about every kind of thread but P2

15-410, S'166

Mysterious yield()

T1() {
 while (1)
 yield(T2);
}

T2() {
 while (1)
 yield(T1);
}

15-410, S'167

User-space Yield

Consider Consider pure user-space threadspure user-space threads
– You implement threads inside a single-threaded process

– There is no thread_fork...

– The opposite of Project 2

What is a thread in that world?What is a thread in that world?
– A stack

– “Thread control block” (TCB)
● Locator for register-save area
● Housekeeping information

15-410, S'168

Big Picture

Thread blocks

Thread stacks

Code, Data

15-410, S'169

User-space Yield

yield(user-thread-3)yield(user-thread-3)
save my registers on stack

/* magic happens here */

restore thread 3's registers from thread 3's stack

return; /* to thread 3! */

15-410, S'1610

Todo List

SaveSave
 General-purpose registers

 (floating-point registers: omitted)

 Stack pointer
 Program counter

Which value to save for each?Which value to save for each?
 The value we want the register to have after the restore is

done

RestoreRestore
 Same list as “save”
 Not our values: the target's values

15-410, S'1611

No magic!

/* C+asm() for slide notation only! */

yield(user-thread-3){
save registers on stack /* asm(...) */
tcb->sp = get_esp(); /* asm(...) */
tcb->pc = &there; /* gcc ext. */
tcb = findtcb(user-thread-3);
set_esp(tcb->sp); /* asm(...) */
jump(tcb->pc); /* asm(...) */

there:
restore registers from stack /* asm() */
return;

}

15-410, S'1612

The Program Counter

What values can the PC (%eip) contain?What values can the PC (%eip) contain?
– In a pure user-thread environment, thread switch

happens only in yield()

– Yield sets saved PC to address of first “restore registers”
instruction

All non-running threads have the All non-running threads have the samesame saved PC saved PC
– Please make sure this makes sense to you

15-410, S'1613

Remove Unnecessary Code – 1

yield(user-thread-3){
save registers on stack
tcb->sp = get_esp();
tcb->pc = &there;
tcb = findtcb(user-thread-3);
set_esp(tcb->sp);

jump(tcb->pc &there);
there:
restore registers from stack
return

}

15-410, S'1614

Remove Unnecessary Code – 2

yield(user-thread-3){
save registers on stack
tcb->sp = get_esp();
tcb->pc = &there;
tcb = findtcb(user-thread-3);
set_esp(tcb->sp);

jump(tcb->pc &there);
there:
restore registers from stack
return

}

15-410, S'1615

Remove Unnecessary Code – 3

yield(user-thread-3){
save registers on stack
tcb->sp = get_esp();
tcb = findtcb(user-thread-3);
set_esp(tcb->sp);
restore registers from stack
return

}

15-410, S'1616

User Threads vs. Kernel
Processes

What if a What if a processprocess yields to another? yields to another?
– “Compare & contrast, in no more than 1,000 words...”

User threadsUser threads
– Share memory

– Threads not protected from each other

ProcessesProcesses
– Do not generally share memory

– P1 must not modify P2's saved registers

Where are process save areas and control blocks?Where are process save areas and control blocks?

15-410, S'1617

Kernel Memory Picture

Kernel code

Control Blocks

Kernel stacks

User code

User stacks

15-410, S'1618

P1's Yield(P2) steps

P1 calls yield(P2)P1 calls yield(P2)

Syscall stub: INT 50 Syscall stub: INT 50 ⇒⇒ boom!boom!

Processor trap protocolProcessor trap protocol
– Saves some registers on P1's kernel stack

● This is a stack switch (user ⇒ kernel), intel-sys.pdf 5.10
● Top-of-kernel-stack specified by %esp0
● Trap frame (x86): %ss & %esp, %eflags, %cs & %eip

Assembly-language wrapperAssembly-language wrapper
– Saves more registers

– Starts C trap handler

Then...?Then...?

15-410, S'1619

P1's Yield(P2) steps
int sys_yield(int pid) {

 return (process_switch(pid));

}

Assembly-language wrapperAssembly-language wrapper
– Restores registers from P1's kernel stack, modulo %eax

Processor return-from-trap protocol (aka IRET)Processor return-from-trap protocol (aka IRET)
– Restores %ss & %esp, %eflags, %cs & %eip

INT 50 instruction “completes”INT 50 instruction “completes”
– Back in user-space

P1 yield() library routine returnsP1 yield() library routine returns

15-410, S'1620

What happened to P2??
process_switch(P2) “takes a while”process_switch(P2) “takes a while”

– When P1 calls it, it “returns” to P2

– When P2 calls it, it “returns” to P1 (eventually)

15-410, S'1621

Inside process_switch()

ATOMICALLYATOMICALLY
enqueue_tail(runqueue, cur_pcb);
save registers /* P1's stack */
cur_pcb = dequeueID(runqueue, P2);
stackpointer = cur_pcb->sp;
restore registers /* P2's stack */
return;

/* some details omitted */

15-410, S'1622

User-mode Yield vs. Kernel-mode

Kernel context switches happen for more reasonsKernel context switches happen for more reasons
– good old yield(), but also...

– Message passing from P1 to P2

– P1 blocked on disk I/O, so run P2

– CPU preemption by clock interrupt

15-410, S'1623

I/O completion Example

P1 calls read()P1 calls read()

In kernelIn kernel
– read() starts disk read

– read() calls condition_wait(&buffer); /* details vary */

– condition_wait() calls process_switch()
● In general, we want somebody else to run

– process_switch() returns to P2

15-410, S'1624

I/O Completion Example

While P2 is runningWhile P2 is running
– Disk completes read, interrupts P2 into kernel

– Interrupt handler calls condition_signal(&buffer);

Now what?Now what?

15-410, S'1625

I/O Completion Example

While P2 is runningWhile P2 is running
– Disk completes read, interrupts P2 into kernel

– Interrupt handler calls condition_signal(&buffer);

Option 1Option 1
– condition_signal() marks P1 as runnable, returns

– Interrupt handler returns to P2

15-410, S'1626

I/O Completion Example

While P2 is runningWhile P2 is running
– Disk completes read, interrupts P2 into kernel

– Interrupt handler calls condition_signal(&buffer);

Option 1Option 1
– condition_signal() marks P1 as runnable, returns

– Interrupt handler returns to P2

Option 2Option 2
– condition_signal() calls process_switch(P1) (“only fair”)

– P2 will finish the interrupt handler much later
● Remember in P3 to confront implications of this!

15-410, S'1627

Clock interrupts

P1 doesn't “ask for” clock interruptP1 doesn't “ask for” clock interrupt
– Clock handler forces P1 into the kernel

● Kernel stack looks like a “system call”
– As if user process had called handle_timer()

● But it was involuntary

P1 doesn't say who to yield toP1 doesn't say who to yield to
– (it didn't make the “system call”)

– Scheduler chooses next process

15-410, S'1628

Summary

Similar steps for user space, kernel spaceSimilar steps for user space, kernel space

Primary differencesPrimary differences
– Kernel has open-ended competitive scheduler

– Kernel more interrupt-driven

Implications for 410 projectsImplications for 410 projects
– P2: firmly understand thread stacks

● thread_create() stack setup
● cleanup
● race conditions

– P3: firmly understand kernel context switch

Advice: draw pictures of stacksAdvice: draw pictures of stacks

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

