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Outline
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What's _STDIO_H_ anyway?

#ifndef _STDIO_H_
#define _STDIO_H_

typedef struct FILE {
  ...
} ...;

#endif /* _STDIO_H_ */
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Archaeology

C is oldC is old

C doesn't have modulesC doesn't have modules

C has C has compilation unitscompilation units
 “Compilation unit” is the secret ANSI code word for “file”
 Compilers sort of know some file types: .c, .s
 Compilers don't really know about .h

● Auxiliary “pre-processor” brain (/lib/cpp) hides them

People use People use conventionsconventions to get module-like C to get module-like C
 These conventions evolved slowly
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The “.h Responsibility” Dilemma

Assume: “stdio module”Assume: “stdio module”

Assume: “network stack module”Assume: “network stack module”
 (Trust us, it's modular!)

Both need to knowBoth need to know
 What's a size_t on this machine, anyway?
 #include <sys/types.h>
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Nested Responsibility

Program 1:Program 1:
 #include <stdio.h>

Program 2:Program 2:
 #include <netinet/tcp_var.h>

AssumeAssume
 Program 1, 2 don't need sys/types.h themselves

Solution 1Solution 1
 stdio.h and netinet/tcp_var.h each include sys/types.h
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Too Much

Program 3:Program 3:
 #include <stdio.h>
 #include <netinet/tcp_var.h>

ProblemProblem
 Now we get two copies sys/types.h
 Lots of whining about redefinitions
 Maybe compilation fails
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Too Much

Program 3:Program 3:
 #include <stdio.h>
 #include <netinet/tcp_var.h>

ProblemProblem
 Now we get two copies sys/types.h
 Lots of whining about redefinitions
 Maybe compilation fails

Solution?Solution?
 Blame the programmer!
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Passing the Buck

Solution 2Solution 2
 Require main program to #include <sys/types.h>
 Then the other .h files don't have to

ProblemProblem
 Extra work for the programmer
 Modules' needs change over time

● Didn't you know?  Since last night xxx needs yyy...
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Solution: Idempotent .h files

.h responsibility.h responsibility
 Activate only once
 No matter how many times included
 Choose string “unlikely to be used elsewhere”

#ifndef _STDIO_H_
#define _STDIO_H_
...
#endif /* _STDIO_H_ */
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What Belongs in a .h?

Types (C: Types (C: declarationsdeclarations, not , not definitionsdefinitions))

Exported interface routines (“public methods”)Exported interface routines (“public methods”)

Constants (#define or enum)Constants (#define or enum)

Macros (when Macros (when appropriateappropriate))

Data items exported by moduleData items exported by module
 Try to avoid this
 Same reason as other languages: data != semantics

No code!No code!
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But What About...?

Real modules have multiple .c filesReal modules have multiple .c files
 libx/logging.c, libx/data.c, libx/interface.c
 Who declares internal functions?
 Who declares internal data structures?

 “internally exporting” data structures is legitimate: internally,
we agree on semantics and can agree on structural changes
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But What About...?

Real modules have multiple .c filesReal modules have multiple .c files
 libx/logging.c, libx/data.c, libx/interface.c
 Who declares internal functions?
 Who declares internal data structures?

 “internally exporting” data structures is legitimate: internally,
we agree on semantics and can agree on structural changes

Not “the” .h fileNot “the” .h file
 We don't want to publish internal details

Maybe a “.i” file?Maybe a “.i” file?
 Help?
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Use the Other .h File!

stdio.hstdio.h
 Included by module clients
 Included by module parts
 Available in /usr/include when stdio is installed

stdio_private.hstdio_private.h
 Included only by module parts
 Not made available in a public location (ideally)

*_private.h should be idempotent, too*_private.h should be idempotent, too
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Summary

#ifndef DSFLK_FSFDDS_FSDFDS#ifndef DSFLK_FSFDDS_FSDFDS
 Well, use a better string
 Used to make .h files idempotent

What What shouldshould go here, anyway? go here, anyway?
 There are two “here”'s here

● foo.h: public interface, available to public
● foo_private.h: internal communication, maybe unpublished
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