
15-410, F'161

#include
Sep. 19, 2016

Dave EckhardtDave Eckhardt

Dave O'HallaronDave O'Hallaron

L09a_include

15-410
“...#ifndef DSFLK_FSFDDS_FSDFDS...”



15-410, F'162

Outline

#ifndef DSFLK_FSFDDS_FSDFDS#ifndef DSFLK_FSFDDS_FSDFDS



15-410, F'163

What's _STDIO_H_ anyway?

#ifndef _STDIO_H_
#define _STDIO_H_

typedef struct FILE {
  ...
} ...;

#endif /* _STDIO_H_ */



15-410, F'164

Archaeology

C is oldC is old

C doesn't have modulesC doesn't have modules

C has C has compilation unitscompilation units
 “Compilation unit” is the secret ANSI code word for “file”
 Compilers sort of know some file types: .c, .s
 Compilers don't really know about .h

● Auxiliary “pre-processor” brain (/lib/cpp) hides them

People use People use conventionsconventions to get module-like C to get module-like C
 These conventions evolved slowly



15-410, F'165

The “.h Responsibility” Dilemma

Assume: “stdio module”Assume: “stdio module”

Assume: “network stack module”Assume: “network stack module”
 (Trust us, it's modular!)

Both need to knowBoth need to know
 What's a size_t on this machine, anyway?
 #include <sys/types.h>



15-410, F'166

Nested Responsibility

Program 1:Program 1:
 #include <stdio.h>

Program 2:Program 2:
 #include <netinet/tcp_var.h>

AssumeAssume
 Program 1, 2 don't need sys/types.h themselves

Solution 1Solution 1
 stdio.h and netinet/tcp_var.h each include sys/types.h



15-410, F'167

Too Much

Program 3:Program 3:
 #include <stdio.h>
 #include <netinet/tcp_var.h>

ProblemProblem
 Now we get two copies sys/types.h
 Lots of whining about redefinitions
 Maybe compilation fails



15-410, F'168

Too Much

Program 3:Program 3:
 #include <stdio.h>
 #include <netinet/tcp_var.h>

ProblemProblem
 Now we get two copies sys/types.h
 Lots of whining about redefinitions
 Maybe compilation fails

Solution?Solution?
 Blame the programmer!



15-410, F'169

Passing the Buck

Solution 2Solution 2
 Require main program to #include <sys/types.h>
 Then the other .h files don't have to

ProblemProblem
 Extra work for the programmer
 Modules' needs change over time

● Didn't you know?  Since last night xxx needs yyy...



15-410, F'1610

Solution: Idempotent .h files

.h responsibility.h responsibility
 Activate only once
 No matter how many times included
 Choose string “unlikely to be used elsewhere”

#ifndef _STDIO_H_
#define _STDIO_H_
...
#endif /* _STDIO_H_ */



15-410, F'1611

What Belongs in a .h?

Types (C: Types (C: declarationsdeclarations, not , not definitionsdefinitions))

Exported interface routines (“public methods”)Exported interface routines (“public methods”)

Constants (#define or enum)Constants (#define or enum)

Macros (when Macros (when appropriateappropriate))

Data items exported by moduleData items exported by module
 Try to avoid this
 Same reason as other languages: data != semantics

No code!No code!



15-410, F'1612

But What About...?

Real modules have multiple .c filesReal modules have multiple .c files
 libx/logging.c, libx/data.c, libx/interface.c
 Who declares internal functions?
 Who declares internal data structures?

 “internally exporting” data structures is legitimate: internally,
we agree on semantics and can agree on structural changes



But What About...?

Real modules have multiple .c filesReal modules have multiple .c files
 libx/logging.c, libx/data.c, libx/interface.c
 Who declares internal functions?
 Who declares internal data structures?

 “internally exporting” data structures is legitimate: internally,
we agree on semantics and can agree on structural changes

Not “the” .h fileNot “the” .h file
 We don't want to publish internal details



But What About...?

Real modules have multiple .c filesReal modules have multiple .c files
 libx/logging.c, libx/data.c, libx/interface.c
 Who declares internal functions?
 Who declares internal data structures?

 “internally exporting” data structures is legitimate: internally,
we agree on semantics and can agree on structural changes

Not “the” .h fileNot “the” .h file
 We don't want to publish internal details

Maybe a “.i” file?Maybe a “.i” file?
 Help?



15-410, F'1615

Use the Other .h File!

stdio.hstdio.h
 Included by module clients
 Included by module parts
 Available in /usr/include when stdio is installed

stdio_private.hstdio_private.h
 Included only by module parts
 Not made available in a public location (ideally)

*_private.h should be idempotent, too*_private.h should be idempotent, too



15-410, F'1616

Summary

#ifndef DSFLK_FSFDDS_FSDFDS#ifndef DSFLK_FSFDDS_FSDFDS
 Well, use a better string
 Used to make .h files idempotent

What What shouldshould go here, anyway? go here, anyway?
 There are two “here”'s here

● foo.h: public interface, available to public
● foo_private.h: internal communication, maybe unpublished


	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

