
15-410, F'161

Synchronization #2
Sep. 16, 2016

Dave EckhardtDave Eckhardt

Dave O'HallaronDave O'Hallaron

L08b_Synch

15-410
“Strangers in the night...”

15-410, F'162

Synchronization

Pass/fail?Pass/fail?
 If you are considering switching to pass/fail, this has

potentially serious implications for your project partner
 Unless both of you are agreed on this, please see me after

class today
 Maybe a brokered partner swap is in order

15-410, F'163

Outline

Last timeLast time
 Two building blocks for threaded programs
 Three requirements for critical-section mechanisms
 Algorithms people don't use for critical sections

TodayToday
 Ways to really solve the critical-section problem

UpcomingUpcoming
 Inside voluntary descheduling
 Project 2 – thread library

15-410, F'164

Critical Section: Reminder

Protects an “atomic instruction sequence”Protects an “atomic instruction sequence”
 We must “do something” to guard against

 Our CPU switching to another thread
 A thread running on another CPU

AssumptionsAssumptions
 Atomic instruction sequence will be “short”
 No other thread “likely” to compete

15-410, F'165

Critical Section: Goals

Typical case (no competitor) should be fastTypical case (no competitor) should be fast

Atypical case can be slowAtypical case can be slow
 Should not be “too wasteful”

15-410, F'166

Interfering Code Sequences

Customer Delivery
cash = store->cash; cash = store->cash;
cash += 50; cash -= 2000;
wallet -= 50; wallet += 2000;
store->cash = cash; store->cash = cash;

Which sequences interfere?
“Easy”: Customer interferes with Customer
Also: Delivery interferes with Customer

15-410, F'167

“Mutex” aka “Lock” aka “Latch”

Specify interfering code sequences via Specify interfering code sequences via an objectan object
 Data item(s) “protected by the mutex”

Object methods encapsulate entry & exit protocolsObject methods encapsulate entry & exit protocols
 mutex_lock(&store->lock);
 cash = store->cash
 cash += 50;
 personal_cash -= 50;
 store->cash = cash;
 mutex_unlock(&store->lock);

What's inside the object?What's inside the object?

15-410, F'168

Atomic Exchange

Intel x86 XCHG instructionIntel x86 XCHG instruction
 intel-isr.pdf page 754

xchg (%esi), %edixchg (%esi), %edi
int32 xchg(int32 *lock, int32 val) {
 register int old;
 old = *lock; /* “bus is locked” */
 lock = val; / “bus is locked” */
 return (old);
}

15-410, F'169

Inside a Mutex

InitializationInitialization
int lock_available = 1;

““Try-lock”Try-lock”
i_won = xchg(&lock_available, 0);

Spin-waitSpin-wait
while (!xchg(&lock_available, 0)
 continue;

UnlockUnlock
xchg(&lock_available, 1); /*expect 0!!*/

15-410, F'1610

Strangers in the Night,
Exchanging 0's

1

Thread

0
?

Thread
?

0

15-410, F'1611

And the winner is...

0

Thread
1

Thread
0

15-410, F'1612

Does it work?

[What are the questions, again?][What are the questions, again?]

15-410, F'1613

Does it work?

Mutual ExclusionMutual Exclusion

ProgressProgress

Bounded WaitingBounded Waiting

15-410, F'1614

Does it work?

Mutual ExclusionMutual Exclusion
 There's only one 1; 1's are conserved
 Only one thread can see lock_available == 1

15-410, F'1615

Does it work?

Mutual ExclusionMutual Exclusion
 There's only one 1; 1's are conserved
 Only one thread can see lock_available == 1

ProgressProgress
 Whenever lock_available == 1 some thread will get it

15-410, F'1616

Does it work?

Mutual ExclusionMutual Exclusion
 There's only one 1; 1's are conserved
 Only one thread can see lock_available == 1

ProgressProgress
 Whenever lock_available == 1 some thread will get it

Bounded WaitingBounded Waiting
 No
 A thread can lose arbitrarily many times

15-410, F'1617

Ensuring Bounded Waiting

IntuitionIntuition
 Lots of people might XCHG “at the same time”
 We need a system with some “taking turns” nature

Possible approachPossible approach
 Make sure each lock-acquisition XCHG race-condition

party has a “fair outcome”
 Accomplishing this may not be obvious

15-410, F'1618

Ensuring Bounded Waiting

IntuitionIntuition
 Lots of people might XCHG “at the same time”
 We need a system with some “taking turns” nature

Possible approachesPossible approaches
 Make sure each lock-acquisition XCHG race-condition

party has a “fair outcome”
 Accomplishing this may not be obvious

 Add fairness via the lock release procedure
 Somebody is “in charge”; let's leverage that

15-410, F'1619

Ensuring Bounded Waiting

LockLock

waiting[i] = true; /*Declare interest*/
got_it = false;
while (waiting[i] && !got_it)
 // “spin on XCHG”, keep the bus warm
 got_it = xchg(&lock_available,
 false);
waiting[i] = false;
return; // Success: in critical section

15-410, F'1620

Ensuring Bounded Waiting

UnlockUnlock

j = (i + 1) % n;
while ((j != i) && !waiting[j])
 j = (j + 1) % n;
if (j == i)
 xchg(&lock_available, true); /*W*/
else
 waiting[j] = false;
return;

15-410, F'1621

Ensuring Bounded Waiting

Possible variationsPossible variations
 Exchange vs. TestAndSet
 Field name is “available” vs. “locked”
 Atomic release vs. normal memory write

 Some people do “blind write” at point “W”

 lock_available = true;
 This may be illegal on some machines
 Unlocker may be required to use special memory access

– Exchange, TestAndSet, etc.

15-410, F'1622

Evaluation

One awkward requirementOne awkward requirement

One unfortunate behaviorOne unfortunate behavior

15-410, F'1623

Evaluation

One awkward requirementOne awkward requirement
 Everybody knows size of thread population

 Always & instantly!
 Or uses an upper bound

One unfortunate behaviorOne unfortunate behavior
 Recall: expect zero competitors
 Algorithm: O(n) in maximum possible competitors

Is this criticism too harsh?Is this criticism too harsh?
 After all, Baker's Algorithm has these “misfeatures”...

15-410, F'1624

Looking Deeper

Look beyond abstract semanticsLook beyond abstract semantics
 Mutual exclusion, progress, bounded waiting

ConsiderConsider
 Typical access pattern
 Particular runtime environments

EnvironmentEnvironment
 Uniprocessor vs. Multiprocessor

 Who is doing what when we are trying to lock/unlock?

 Threads aren't mysteriously “running” or “not running”
 Decision made by a scheduling algorithm, with properties

15-410, F'1625

Uniprocessor Environment

LockLock
 What if xchg() didn't work the first time?

15-410, F'1626

Uniprocessor Environment

LockLock
 What if xchg() didn't work the first time?
 Some other process has the lock

 That process isn't running (because we are)
 xchg() loop is a waste of time
 We should let the lock-holder run instead of us

15-410, F'1627

Uniprocessor Environment

LockLock
 What if xchg() didn't work the first time?
 Some other process has the lock

 That process isn't running (because we are)
 xchg() loop is a waste of time
 We should let the lock-holder run instead of us

UnlockUnlock
 What about bounded waiting?
 When we mark mutex available, who wins next?

15-410, F'1628

Uniprocessor Environment

LockLock
 What if xchg() didn't work the first time?
 Some other process has the lock

 That process isn't running (because we are)
 xchg() loop is a waste of time
 We should let the lock-holder run instead of us

UnlockUnlock
 What about bounded waiting?
 When we mark mutex available, who wins next?

 Whoever runs next..only one at a time! (“Fake competition”)
 How unfair are real OS kernel thread schedulers?
 If scheduler is vastly unfair, the right thread will never run!

15-410, F'1629

Multiprocessor Environment

LockLock
 Spin-waiting probably justified

 (why?)

Multiprocessor Environment

LockLock
 Spin-waiting probably justified

 (why?)

UnlockUnlock
 Next xchg() winner “chosen” by memory hardware
 How unfair are real memory controllers?

15-410, F'1631

Test&Set

boolean testandset(int32 *lock) {
 register boolean old;
 old = *lock; /* “bus is locked” */
 lock = true; / “bus is locked” */
 return (old);
}

Conceptually simpler than XCHG??Conceptually simpler than XCHG??

Other x86 instructionsOther x86 instructions
 XADD, CMPXCHG, CMPXCHG8B, ...
 See “Locked Atomic Operations” in intel-sys.pdf

 We expect you to consult intel-sys and intel-isr about this

15-410, F'1632

Load-linked/Store-conditional

For multiprocessorsFor multiprocessors
 “Bus locking considered harmful”

Split XCHG into two halvesSplit XCHG into two halves
 Load-linked(addr) fetches old value from memory
 Store-conditional(addr,val) stores new value back

 If nobody else stored to that address in between
 If so, instruction “fails” (sets an error code)

15-410, F'1633

Load-linked, Store-conditional

lock: LA R1, mutex # &mutex in R1
loop: LL R2, 0(R1) # mutex->avail
 BEQ R2, R0, loop # avail == 0?
 MOV R3, R0 # prepare 0
 SC 0(R1), R3 # write 0?
 BEQ R3, R0, loop # aborted...

Your cache “snoops” the shared memory busYour cache “snoops” the shared memory bus
 Locking would shut down all memory traffic
 Snooping allows all traffic, watches for conflicting traffic
 Are aborts “ok”? When are they “ok”?

15-410, F'1634

Intel i860 magic lock bit

Instruction sets processor in “lock mode”Instruction sets processor in “lock mode”
 Locks bus
 Disables interrupts

Isn't that dangerous?Isn't that dangerous?
 32-instruction countdown timer triggers exception
 Any exceptions (page fault, zero divide, ...) unlock bus

Why would you want this?Why would you want this?
 Implement test&set, compare&swap, semaphore – you

choose

15-410, F'1635

Mutual Exclusion: Inscrutable
Software

Lamport's “Fast Mutual Exclusion” algorithmLamport's “Fast Mutual Exclusion” algorithm
 5 writes, 2 reads (if no contention)
 Not bounded-waiting (in theory, i.e., if contention)
 http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-

7.html

Cool magic - why not use it?Cool magic - why not use it?
 What kind of memory writes/reads?
 Remember, the computer is “modern”...

15-410, F'1636

Passing the Buck?

Q: Why not ask the OS for mutex_lock() Q: Why not ask the OS for mutex_lock() system callsystem call??

Easy on a uniprocessor...Easy on a uniprocessor...
 Kernel automatically excludes other threads
 Kernel can easily disable interrupts
 No need for messy unbounded loop, weird XCHG...

Kernel has special power on a multiprocessorKernel has special power on a multiprocessor
 Can issue “remote interrupt” to other CPUs
 No need for messy unbounded loop...

So why So why notnot rely on OS? rely on OS?

15-410, F'1637

Passing the Buck

A: Too expensiveA: Too expensive
 Because... (you know this song!)

15-410, F'1638

Mutual Exclusion: Tricky
Software

Fast Mutual Exclusion for UniprocessorsFast Mutual Exclusion for Uniprocessors
 Bershad, Redell, Ellis: ASPLOS V (1992)

Want uninterruptable instruction sequences?Want uninterruptable instruction sequences?
 Pretend!

 scash = store->cash;
 scash += 10;
 wallet -= 10;
 store->cash = scash;

 Uniprocessor: interleaving requires thread switch...
 Short sequence almost always won't be interrupted...

15-410, F'1639

How can that work??

Kernel Kernel detectsdetects “context switch in atomic sequence” “context switch in atomic sequence”
 Maybe a small set of instructions
 Maybe particular memory areas
 Maybe a flag

 no_interruption_please = 1;

Kernel Kernel handleshandles unusual case unusual case
 Hand out another time slice? (Is that ok?)
 Hand-simulate unfinished instructions (yuck?)
 “Idempotent sequence”: slide PC back to start

15-410, F'1640

Summary

Atomic instruction sequenceAtomic instruction sequence
 Nobody else may interleave same/”related” sequence

Specify interfering sequences via Specify interfering sequences via mutex objectmutex object

Inside a mutexInside a mutex
 Last time: race-condition memory algorithms
 Atomic-exchange, Compare&Swap, Test&Set, ...
 Load-linked/Store-conditional
 Tricky software, weird software

Mutex strategyMutex strategy
 How should you behave given runtime environment?

	Title
	Slide 2
	Outline
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

